Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036302    DOI: 10.1088/1674-1056/26/3/036302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical description of electron-phonon Fock space for gapless and gapped nanowires

Ashrafalsadat Shariati1,2, Hassan Rabani1,2, Mohammad Mardaani1,2
1 Department of Physics, Faculty of Science, Shahrekord University, P. O. Box 115, Shahrekord, Iran;
2 Nanotechnology Research Center, Shahrekord University, 8818634141, Shahrekord, Iran
Abstract  We study the effect of electron-phonon (e-ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green's function and multi-channel techniques, taking into account the local and nonlocal e-ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e-ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels.
Received:  05 November 2016      Revised:  11 December 2016      Accepted manuscript online: 
PACS:  63.20.kd (Phonon-electron interactions)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  78.67.Uh (Nanowires)  
Fund: Project supported by the Iranian Nanotechnology Initiative. This work has also been supported by Shahrekord University through a research fund.
Corresponding Authors:  Hassan Rabani     E-mail:  rabani-h@sci.sku.ac.ir

Cite this article: 

Ashrafalsadat Shariati, Hassan Rabani, Mohammad Mardaani Theoretical description of electron-phonon Fock space for gapless and gapped nanowires 2017 Chin. Phys. B 26 036302

[1] Ju Y S 2005 Appl. Phys. Lett. 87 153106
[2] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.:Condens. Matter 19 103201
[3] Ferry D K and Goodnick S M 1999 Transport in Nanostructures (Cambridge:Cambridge University Press)
[4] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A and Yang P 2008 Nature 451 163
[5] Giazotto F, Heikkil T T, Luukanen A, Savin A M and Pekola J P 2006 Rev. Mod. Phys. 78 217
[6] Altomare F and Chang A M One-Dimensional Superconductivity in Nanowires 2013 (New York:John Wiley & Sons)
[7] Verstraete M J and Gonze X 2006 Phys. Rev. B 74 153408
[8] Kittel C Introduction to Solid State Physics 2007 (Wiley India Pvt. Limited)
[9] Grosso G and Parravicini G P 2013 Solid State Physics (2th Edn.) (New York:Academic Press)
[10] Kushmerick J G, Lazorcik J, Patterson C H and Shashidhar R 2004 Nano Lett. 4 639
[11] Mardaani M, Rabani H, Esmaili E and Shariati A 2015 J. App. Phys. 118 054306
[12] Mardaani M and Rabani H 2014 Phys. Status Solidi B 251 1001
[13] De Z, Guang K and Jun L 2015 Chin. Phys. B 24 17301
[14] Burkle M, Viljas J K, Hellmuth T J, Scheer E, Weigend F, Schon G and Pauly F 2013 Phys. Status Solidi B 250 2468
[15] Zhang W, Delerue C, Niquet Y M, Allan G and Wang E 2010 Phys. Rev. B 82 115319
[16] Datta S Quantom Transport:Atom to Transistor 2005 (Cambridge:Cambridge University Press)
[17] Baroni S, de Gironcoli S, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[18] Torres L F, Pastawski H M and Makler S S 2001 Phys. Rev. B 64 193304
[19] Nozaki D, da Rocha C G, Pastawski H M and Cuniberti G 2012 Phys. Rev. B 85 155327
[20] Holstein T 1959 Ann. Phys. 8 343
[21] Peierls R E 1955 Quantum Theory of Solids (Oxford:Clarendon Press)
[22] Coropceanu V, Cornil J, da Silva D A, Olivier Y, Silbey R and Bredas J L 2007 Chem. Rev. 107 926
[23] Troisi A and Orlandi G 2006 Phys. Rev. Lett. 96 086601
[24] Walczak K 2007 Physica B 392 173
[25] Pastawski H M, Torres L E F F and Medina E 2002 Chem. Phys. 281 257
[26] Mardaani M and Rabani H 2014 J. Mag. Mag. Mater. 331 28
[27] Vdovin E E, Mishchenko A, Greenaway M T, Zhu M J, Ghazaryan D, Misra A, Cao Y, Morozov S V, Makarovsky O, Fromhold T M, Patané A, Slotman G J, Katsnelson M I, Geim A K, Novoselov K S and Eaves L 2016 Phys. Rev. Lett. 116 186603
[1] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[2] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[3] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[4] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[5] Design of an ultrafast electron diffractometer with multiple operation modes
Chun-Long Hu(胡春龙), Zhong Wang(王众), Yi-Jie Shi(石义杰), Chang Ye(叶昶), and Wen-Xi Liang(梁文锡). Chin. Phys. B, 2021, 30(9): 090701.
[6] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[7] Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛). Chin. Phys. B, 2020, 29(12): 120505.
[8] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[9] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[10] The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹). Chin. Phys. B, 2018, 27(12): 126302.
[11] Ultrafast electron diffraction
Xuan Wang(王瑄), Yutong Li(李玉同). Chin. Phys. B, 2018, 27(7): 076102.
[12] Superconductivity in electron-doped arsenene
Xin Kong(孔鑫), Miao Gao(高淼), Xun-Wang Yan(闫循旺), Zhong-Yi Lu(卢仲毅), Tao Xiang(向涛). Chin. Phys. B, 2018, 27(4): 046301.
[13] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[14] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[15] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
No Suggested Reading articles found!