Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 034201    DOI: 10.1088/1674-1056/26/3/034201
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Optical properties of phosphorene

Jiong Yang, Yuerui Lu(卢曰瑞)
Research School of Engineering, College of Engineering and Computer Science, the Australian National University, Canberra ACT 2601, Australia
Abstract  

Phosphorene is a two-dimensional semiconductor with layers-dependent bandgap in the near-infrared range and it has attracted a great deal of attention due to its high anisotropy and carrier mobility. The highly anisotropic nature of phosphorene has been demonstrated through Raman and polarization photoluminescence measurements. Photoluminescence spectroscopy has also revealed the layers-dependent bandgap of phosphorene. Furthermore, due to the reduced dimensionality and screening in phosphorene, excitons and trions can stably exist at elevated temperatures and have large binding energies. The exciton and trion dynamics are thus detected by applying electrical bias or optical injection to the phosphorene system. Finally, various optical and optoelectronic applications based on phosphorene have been demonstrated and discussed.

Keywords:  two-dimensional material      phosphorene      exciton      anisotropy  
Received:  12 December 2016      Revised:  18 January 2017      Accepted manuscript online: 
PACS:  42.25.Ja (Polarization)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  68.35.bg (Semiconductors)  
Corresponding Authors:  Yuerui Lu     E-mail:  yuerui.lu@anu.edu.au

Cite this article: 

Jiong Yang, Yuerui Lu(卢曰瑞) Optical properties of phosphorene 2017 Chin. Phys. B 26 034201

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[5] Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W and Hone J 2010 Science 328 76
[6] Yang J, Wang Z, Wang F, Xu R, Tao J, Zhang S, Qin Q, Luther-Davies B, Jagadish C, Yu Z and Lu Y 2016 Light Sci. Appl. 5 e16046
[7] Pei J, Yang J, Xu R, Zeng Y H, Myint Y W, Zhang S, Zheng J C, Qin Q, Wang X, Jiang W and Lu Y 2015 Small 11 6384
[8] Chen H, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J , Decker M, Staude I, Rockstuhl C, Lu Y, Kivshar Y S and Neshev D 2011 Sci. Rep. 6 22296
[9] Yi Z, Jiong Y, Shuang Z, Salman M, Jiajie P, Xinghua W and Yuerui L 2016 Nanotechnology 27 135706
[10] Lu J, Yang J, Carvalho A, Liu H, Lu Y and Sow C H 2016 Acc. Chem. Res. 49 1806
[11] Pei J, Yang J and L L 2017 IEEE J. Sel. Top. Quantum Electron. 23 p. 1
[12] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[13] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[14] Wang X, Jones A M, Seyler K L, Tran V, Jia Y, Zhao H, Wang H, Yang L, Xu X and Xia F 2015 Nat. Nanotechnol. 10 517
[15] Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q and Lu Y 2014 ACS Nano 8 9590
[16] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[17] Yang J, Lü T, Myint Y W, Pei J, Macdonald D, Zheng J C and Lu Y 2015 ACS Nano 9 6603
[18] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
[19] Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400
[20] Yang J, Xu R, Pei J, Myint Y W, Wang F, Wang Z, Zhang S, Yu Z and Lu Y 2015 Light Sci. Appl. 4 e312
[21] Li L, Kim J, Jin C, Ye G, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X, Zhang Y and Wang F 2016 arXiv:1601.03103
[22] Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[23] Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[24] Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2014 Nano Lett. 14 5733
[25] Buscema M, Groenendijk D J, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nat. Commun. 5 4651
[26] Xu R, Yang J, Zhu Y, Yan H, Pei J, Myint Y W, Zhang S and Lu Y 2016 Nanoscale 8 129
[27] Kheng K, Cox R T, d'Aubigné M Y, Bassani F, Saminadayar K and Tatarenko S 1993 Phys. Rev. Lett. 71 1752
[28] Xu R, Zhang S, Wang F, Yang J, Wang Z, Pei J, Myint Y W, Xing B, Yu Z, Fu L, Qin Q and Lu Y 2016 ACS Nano 10 2046
[29] Huard V, Cox R T, Saminadayar K, Arnoult A and Tatarenko S 2000 Phys. Rev. Lett. 84 187
[30] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[31] Favron A, Gaufres E, Fossard F, Phaneuf-Lheureux A L, Tang N Y W, Levesque P L, Loiseau A, Leonelli R, Francoeur S and Martel R 2015 Nat. Mater. 14 826
[32] Andres C G, Leonardo V, Elsa P, Joshua O I, Narasimha-Acharya K L, Sofya I B, Dirk J G, Michele B, Gary A S, Alvarez J V, Henny W Z, Palacios J J and Herre S J V D Z 2014 2D Mater. 1 025001
[33] Pei J, Gai X, Yang J, Wang X, Yu Z, Choi D Y, Luther-Davies B and Lu Y 2016 Nat. Commun. 7 10450
[34] Zhang G, Chaves A, Huang S, Song C, Low T and Yan H 2016 arXiv:1607.08049
[35] Keyes R W 1953 Phys. Rev. 92 580
[36] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotechnol. 8 634
[37] Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C, Schüller C and Korn T 2015 Phys. Status Solidi Rapid Res. Lett. 9 457
[38] Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[39] Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J and Hersam M C 2014 Nano Lett. 14 6964
[40] Liu H, Du Y, Deng Y and Ye P D 2015 Chem. Soc. Rev. 44 2732
[41] Ziletti A, Carvalho A, Campbell D K, Coker D F and Castro Neto A H 2015 Phys. Rev. Lett. 114 046801
[42] Joshua O I, Gary A S, Herre S J V D Z and Andres C G 2015 2D Mater. 2 011002
[43] Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS Nano 8 11753
[44] Kim J S, Liu Y, Zhu W, Kim S, Wu D, Tao L, Dodabalapur A, Lai K and Akinwande D 2015 Sci. Rep. 5 8989
[45] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K and Gorbachev R V 2015 Nano Lett. 15 4914
[46] Avsar A, Vera-Marun I J, Tan J Y, Watanabe K, Taniguchi T, Castro Neto A H and Özyilmaz B 2015 ACS Nano 9 4138
[47] Chen X, Wu Y, Wu Z, Han Y, Xu S, Wang L, Ye W, Han T, He Y, Cai Y and Wang N 2015 Nat. Commun. 6 7315
[48] Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H and Zhang Y 2016 Nat. Nanotechnol. 11 593
[49] Xu R, Yang J, Myint Y W, Pei J, Yan H, Wang F and Lu Y 2016 Adv. Mater. 28 3493
[50] Miyauchi Y, Iwamura M, Mouri S, Kawazoe T, Ohtsu M and Matsuda K 2013 Nat. Photon. 7 715
[51] Ziletti A, Carvalho A, Trevisanutto P E, Campbell D K, Coker D F and Castro Neto A H 2015 Phys. Rev. B 91 085407
[52] Lu J, Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto A H, Özyilmaz B and Sow C H 2015 ACS Nano 9 10411
[53] Edmonds M T, Tadich A, Carvalho A, Ziletti A, O'Donnell K M, Koenig S P, Coker D F, Özyilmaz B, Neto A H C and Fuhrer M S 2015 ACS Appl. Mater. Inter. 7 14557
[54] Lu J, Carvalho A, Wu J, Liu H, Tok E S, Neto A H C, Özyilmaz B and Sow C H 2016 Adv. Mater. 28 4090
[55] Wu J, Koon G K W, Xiang D, Han C, Toh C T, Kulkarni E S, Verzhbitskiy I, Carvalho A, Rodin A S, Koenig S P, Eda G, Chen W, Neto A H C and Özyilmaz B 2015 ACS Nano 9 8070
[56] Youngblood N, Chen C, Koester S J and Li M 2015 Nat. Photon.
[57] Yu, Zhang S, Zeng H and Wang Q J 2016 Nano Energy 25 34
[58] Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[6] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[7] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[8] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[9] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[10] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[11] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[12] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[15] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
No Suggested Reading articles found!