Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027701    DOI: 10.1088/1674-1056/26/2/027701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition

Xue-Li Ma(马雪丽)1,3, Hong Yang(杨红)1,3, Jin-Juan Xiang(项金娟)1,3, Xiao-Lei Wang(王晓磊)1,3, Wen-Wu Wang(王文武)1,3, Jian-Qi Zhang(张建齐)2, Hua-Xiang Yin(殷华湘)1,3, Hui-Long Zhu(朱慧珑)1,3, Chao Zhao(赵 超)1,3
1 Integrated Circuit Advanced Process R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 National Center for Nanoscience and Technology, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

In this work, ultrathin pure HfO2 and Al-doped HfO2 films (about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO2 and Al-doped HfO2 films are both amorphous. After 550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO2 film while the Al-doped HfO2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.

Keywords:  Al-doped HfO2 ultrathin film      phase transition      thermodynamics      kinetics  
Received:  14 October 2016      Revised:  22 November 2016      Accepted manuscript online: 
PACS:  77.55.D-  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  82.60.Nh (Thermodynamics of nucleation)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016501) and the National Natural Science Foundation of China (Grant Nos. 61574168 and 61504163).

Corresponding Authors:  Wen-Wu Wang     E-mail:  wangwenwu@ime.ac.cn

Cite this article: 

Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超) Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition 2017 Chin. Phys. B 26 027701

[1] Chen Y H, Chen C Y, Cho C L, Hsieh C H, Wu Y C, Chang-Liao K S and and Wu Y H 2015 Proceedings of IEDM Tech. Dig., December 7-9, 2015, Washington, D.C., USA, p. 576
[2] Wu C Y, Hsieh C H, Lee C W and Wu Y H 2015 Appl. Phys. Lett. 106 053508
[3] Cisneros-Morales M C and Aita C R 2011 Appl. Phys. Lett. 98 051909
[4] Fu C H, Chang-Liao K S, Li C C, Ye Z H, Hsu F M, Wang T K, Lee Y J and Tsai M J 2012 Appl. Phys. Lett. 101 032105
[5] Bethge O, Abermann S, Henkel C and Bertagnolli E 2009 Thin Solid Films 517 5543
[6] Choi J H, Mao Y and Chang J P 2011 Mater. Sci. Eng. R 72 97
[7] Robertson J 2008 J. Appl. Phys. 104 124111
[8] Zhao X Y and Vanderbilt D 2002 Phys. Rev. B 65 233106
[9] Tomida K, Kita K and Toriumi A 2006 Appl. Phys. Lett. 89 142902
[10] Kita K, Kyuno K and Toriumi A 2005 Appl. Phys. Lett. 86 102906
[11] Park T J, Kim J H, Jang J H, Lee C K, Na K D, Lee S Y, Jung H S, Kim M, Han S and Hwang C S 2010 Chem. Mater. 22 4175
[12] Park P K and Kang S W 2006 Appl. Phys. Lett. 89 192905
[13] Ragnarsson L A, Adelmann C, Higuchi Y, Opsomer K, Veloso A, Chew S A, Röhr E, Vecchio E, Shi X P, Devriendt K, Sebaai F, Kauerauf T, Pawlak M A, Schram T, Elshocht S V, Horiguchi N and Thean A 2012 Proceedings of VLSI Tech. Dig., June 12-15, 2012, Honolulu, USA, p. 27
[14] Adelmann C, Schram T, Chew S A, Woicik J C, Brizzi S, Tallarida M, Schmeisser D, Horiguchi N, Elshocht S V and Ragnarsson L A 2014 Appl. Phys. Lett. 104 122906
[15] Yang Y, Zhu W J, Ma T P and Stemmer S 2004 J. Appl. Phys. 95 3772
[16] Govindarajan S, Böscke T S, Sivasubramani P, Kirsch P D, Lee B H, Tseng H H, Jammy R, Schröder U, Ramanathan S and Gnade B E 2007 Appl. Phys. Lett. 91 062906
[17] Hackley J C, Gougousi T and Demaree J D 2007 J. Appl. Phys. 102 034101
[18] Kim H, Lee H B R and Maeng W J 2009 Thin Solid Films 517 2563
[19] Yu H Y, Li M F and Kwong D L 2004 Thin Solid Films 462-463 110
[20] Zhu W, Ma T P, Tamagawa T, Di Y, Kim J, Carruthers R, Gibson M and Furukawa T 2001 Proceedings of IEDM Tech. Dig., December 2-5, 2001, Washington, D.C., USA, p. 20.4.1
[21] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[22] STACY D W and WILDER D R 1975 J. Am. Ceram. Soc. 58 285
[23] Mittemeijer E J 2011 Fundamentals of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 371-380
[24] Gottstein G 2004 Physical Foundations of Materials Science (Berlin/Heidelberg: Springer-Verlag) pp. 389-422
[25] Gutiérrez G and Johansson B 2002 Phys. Rev. B 65 104202
[26] Wang J and Li H P and Stevens R 1992 J. Mater. Sci. 27 5397
[27] Lee C K, Cho E, Lee H S, Hwang C S and Han S 2008 Phys. Rev. B 78 012102
[28] Saitoh M, Mizoguchi T, Tohei T and Ikuhara Y 2012 J. Appl. Phys. 112 084514
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[12] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!