Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024212    DOI: 10.1088/1674-1056/26/2/024212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable wavelength filters using polymer long-period waveguide gratings based on metal-cladding directly defined technique

Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Yang Zheng(郑洋), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Da-Ming Zhang(张大明)
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  In this work, long-period waveguide grating-based tunable wavelength filters using organic-inorganic grafting poly(methyl methacrylate) (PMMA) materials are designed and fabricated by metal-cladding directly defined technique. The thermal stabilities and optical properties of the organic-inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 dB and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.
Keywords:  organic-inorganic grafting materials      polymer optical waveguide      long-period grating filter      metal-cladding defined technique  
Received:  28 June 2016      Revised:  04 November 2016      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.79.Dj (Gratings)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575076, 61475061, and 61405070), the Fundamental Research Funds for the Central Universities, China (Grant No. JCKY-QKJC08), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20130522151JH, 20140519006JH, and 20160520091JH), and the China Postdoctoral Science Foundation (Grant No. 2015M571362).
Corresponding Authors:  Chang-Ming Chen     E-mail:  chencm@jlu.edu.cn

Cite this article: 

Ji-Hou Wang(王继厚), Chang-Ming Chen(陈长鸣), Yang Zheng(郑洋), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Xiao-Qiang Sun(孙小强), Fei Wang(王菲), Da-Ming Zhang(张大明) Tunable wavelength filters using polymer long-period waveguide gratings based on metal-cladding directly defined technique 2017 Chin. Phys. B 26 024212

[1] Jiang J, Callender C L and Ledderhof C J 2010 IEEE Photon. Technol. Lett. 22 951
[2] Zhou X J, Shi S H and Zhang Z Y 2012 J. Photon. 4 119
[3] Garg R and Thyagarajan K 2013 Appl. Opt. 52 2086
[4] Guo X W, Zhang X X and Li H P 2010 Optoelectron. 55 1338
[5] Zhang Y W, Li Y F and He Z 2011 Opt. Commun. 284 1828
[6] Kwon M 2010 Opt. Lett. 35 3835
[7] Zhang D L, Kang J and Wong W H 2015 Opt. Lett. 40 4715
[8] Semwal G and Rastogi V 2016 Opt. Commun. 359 336
[9] Liu Q, Gu Z H and Kee J S 2014 Opt. Lett. 22 29954
[10] Jin W and Chiang K S 2015 Opt. Lett. 40 237
[11] Chuang R W, Hsu M T and Wang G S 2014 Jpn. J. Appl. Phys. 53 04EG15 1-4
[12] Yang Y, Chen K X and Jin W 2015 IEEE Photon. Technol. Lett. 27 1985
[13] Cai Y J, Li M, Yu L, et al. 2015 Chin. Phys. Lett. 32 107305
[14] Yi J P, Chi L, Chen J S, et al. 2016 Acta Phys. Sin. 65 056101 (in Chinese)
[15] Chu Y M, Chiang K S and Liu Q 2006 Appl. Opt. 45 2755
[16] Jiang J, Callender C L and Jacob S 2012 IEEE Photon. Technol. Lett. 24 2169
[17] Kwon M S and Shin S Y 2005 IEEE Photon. Technol. Lett. 17 145
[18] Chen C M, Sun X Q, Wang F, Zhang F, Wang H, Shi Z, Cui Z C and Zhang D M 2012 J. Quantum Electron. 48 61
[19] Rastogi V and Chiang K S 2002 Appl. Opt. 41 6351
[20] Kwon M S and Shin S Y 2005 J. Sel. Top. Quantum Electron. 11 190
[21] Chiang K S, Chow C K, Liu Q, Chan H P and Lor K P 2006 IEEE Photon. Technol. Lett. 18 1109
[22] Lor K P, Chiang K S, Liu Q and Chan H P 2011 IEEE Photon. Technol. Lett. 23 155
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[3] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[4] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[5] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[6] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[7] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[8] Integrated silicon-based suspended racetrack micro-resonator for biological solution sensing with high-order mode
Tao Ma(马涛), Yong-Sheng Tian(田永生), Shao-Hui Liu(刘少晖), Jia-He Ma(马家赫), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(11): 114208.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[11] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[12] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[13] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[14] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[15] High common mode rejection ratio InP 90° optical hybrid in ultra-broadband at 60 nm with deep-rigded waveguide based on ×4 MMI coupler
Zi-Qing Lu(陆子晴), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Feng Xiao(肖峰), Fan Xiao(肖帆). Chin. Phys. B, 2020, 29(5): 054206.
No Suggested Reading articles found!