Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 018106    DOI: 10.1088/1674-1056/26/1/018106
Special Issue: SPECIAL TOPIC — Amorphous physics and materials
SPECIAL TOPIC—Amorphous physics and materials Prev   Next  

LaGa-based bulk metallic glasses

Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report the formation of LaGa-based bulk metallic glasses. Ternary La-Ga-Cu glassy rods of 2-3 mm in diameter can be easily formed in a wide composition range by the conventional copper mold casting method. With minor addition of extra elements such as Co, Ni, Fe, Nb, Y, and Zr, the critical diameter of the full glassy rods of the La-Ga-Cu matrix can be markedly enhanced to at least 5 mm. The characteristics and properties of these new LaGa-based bulk metallic glasses with excellent glass formation ability and low glass transition temperature are model systems for fundamental issues investigation and could have some potential applications in micromachining field.

Keywords:  bulk metallic glasses      glass forming ability      La-Ga-Cu alloys  
Received:  14 November 2016      Revised:  19 December 2016      Accepted manuscript online: 
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  64.70.pe (Metallic glasses)  
  62.65.+k (Acoustical properties of solids)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51571209 and 51461165101), the National Basic Research Program of China (Grant No. 2015CB856800), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC017).

Corresponding Authors:  Hai-Yang Bai     E-mail:  hybai@iphy.ac.cn

Cite this article: 

Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋) LaGa-based bulk metallic glasses 2017 Chin. Phys. B 26 018106

[1] Johnson W L 1999 MRS Bull. 24 42
[2] Inoue A 2000 Acta Mater. 48 279
[3] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R. 44 45
[4] Greer A L and Ma E 2007 MRS Bull. 32 611
[5] Inoue A and Zhang T 1996 Mater. Trans. JIM 37 185
[6] Peker A and Johnson W L 1993 Appl. Phys. Lett. 63 2342
[7] He Y, Schwarz R B and Archuleta J I 1996 Appl. Phys. Lett. 69 1861
[8] Drehman A J, Greer A L and Turnbull D 1982 Appl. Phys. Lett. 41 716
[9] Ponnambalam V, Poon S J, Shiflet G J, Keppens V M, Taylor R and Petculescu G 2003 Appl. Phys. Lett. 83 1131
[10] Lu Z P, Liu C T and Porter W D 2003 Appl. Phys. Lett. 83 2581
[11] Wang X, Yoshii I, Inoue A, Kim Y H and Kim I B 1999 Mater. Trans. JIM 40 1130
[12] Yi S, Park T G and Kim D H 2000 J. Mater. Res. 15 2425
[13] Guo F Q, Wang H J, Poon S J and Shiflet G J 2005 Appl. Phys. Lett. 86 091907
[14] Lin X H and Johnson W L 1995 J. Appl. Phys. 78 6514
[15] Tang M B, Zhao D Q, Pan M X and Wang W H 2004 Chin. Phys. Lett. 21 901
[16] Wu N C, Zuo L, Wang J Q and Ma E 2016 Acta Mater. 108 143
[17] Xi X K, Wang R J, Zhao D Q, Pan M X and Wang W H 2004 J. Non-Cryst. Solids 344 105
[18] Si J J, Wang T, Wu Y D, Cai Y H, Chen X H, Wang W Y, Liu Z K and Hui X D 2015 Appl. Phys. Lett. 106 251905
[19] Huang H G, Ke H B, Wang Y M, Pu Z, Zhang P, Zhang P G and Liu T W 2016 J. Alloys Compd. 684 75
[20] Zhang B, Pan M X, Zhao D Q and Wang W H 2004 Appl. Phys. Lett. 85 61
[21] Zhang B, Zhao D Q, M X Pan, W H Wang and Greer A L 2005 Phys. Rev. Lett. 94 205502
[22] Zhang B, Zhao D Q, Pan M X, Wang R J and Wang W H 2006 Acta Mater. 54 3025
[23] Li S, Wang R J, Pan M X, Zhao D Q and Wang W H 2005 Scr. Mater. 53 1489
[24] Jiang Q K, Zhang G Q, Chen LY, Wu J Z, Zhang H G and Jiang J Z 2006 J. Alloys Compd. 424 183
[25] Li R, Pang S, Men H, Ma C and Zhang T 2006 Scr. Mater. 54 1123
[26] Xi X K, Li S, Wang R J, Zhao D Q, Pan M X and Wang W H 2005 J. Mater. Res. 20 2243
[27] Wu J, Wang Q, Chen F, Wang Y M, Qiang J B and Dong C 2007 Intermetallics 15 652
[28] Li S, Wang R J, Pan M X, Zhao D Q and Wang W H 2008 J. Non-Cryst. Solids 354 1080
[29] Yu H B, Yu P, Wang W H and Bai H Y 2008 Appl. Phys. Lett. 92 141906
[30] Zhao Z F, Wen P, Wang R J, Zhao D Q, Pan M X and Wang W H 2006 J. Mater. Res. 21 369
[31] Wang J Q, Wang W H and Bai H Y 2009 Appl. Phys. Lett. 94 041910
[32] Ding D, Wang P, Guan Q, Tan M B and Xia L 2013 Chin. Phys. Lett. 30 096104
[33] Wu C, Ding D and Xia L 2016 Chin. Phys. Lett. 33 016102
[34] Kumar G, Tang H X and Schroers J 2009 Nature 457 868
[35] Zhao K, Xia X X, Bai H Y, Zhao D Q and Wang W H 2011 Appl. Phys. Lett. 98 141913
[36] Zhao K, Li J F, Zhao D Q, Pan M X and Wang W H 2009 Scr. Mater. 61 1091
[37] Zhao K, Liu K S, Li J F, Wang W H and Jiang L 2009 Scr. Mater. 60 225
[38] Jiao W, Zhao K, Xi X K, Zhao D Q, Pan M X and Wang W H 2010 J. Non-Cryst. Solids 356 1867
[39] Zhang W, Guo H, Chen M W, Saotome Y, Qin C L and Inoue A 2009 Scr. Mater. 61 744
[40] Xu B C, Xue R J and Zhang B 2013 Intermetallics 32 1
[41] Xue, R J Zhao L Z, Zhang B, Bai H Y, Wang W H and Pan M X 2015 Appl. Phys. Lett. 107 241902
[42] Singh D, Mandal R K, Srivastava O N and Tiwari R S 2015 J. Non-Cryst. Solids 427 98
[43] Yadav T P, Singh D, Shahi R R, Shaz M A, Tiwari R S and Srivastava O N 2011 Philos. Mag. 91 2474
[44] Fremy M A, Gignoux D, Schmitt D and Takeuchi A Y 1989 J. Magn. Magn. Mater. 82 175
[45] Wang W H 2009 Adv. Mater. 21 4524
[46] Cardarelli F 2000 Materials Handbook (London:Springer)
[47] Wang W H, Bian Z, Wen P, Zhang Y, Pan M X and Zhao D Q 2002 Intermetallics 10 1249
[48] Lu Z P and Liu C T 2004 J. Mater. Sci. 39 3965
[49] Liu C T and Lu Z P 2005 Intermetallics 13 415
[50] Wang W H 2007 Prog. Mater. Sci. 52 540
[51] Park E S, Chang H J, Kyeong J S and Kim D H 2008 J. Mater. Res. 23 1995
[52] Chen N, Martin L, Luzguine-Luzgin D V and Inoue A 2010 Materials 3 5320
[53] Miracle D B, Sanders W S and Senkov O N 2003 Philos. Mag. 83 2409
[54] Yim H C, Busch R and Johnson W L 1998 J. Appl. Phys. 83 7993
[55] Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217
[56] Zhang B, Wang R J, Zhao D Q, Pan M X and Wang W H 2004 Phys. Rev. B 70 224208
[57] Böhmer R and Angell C A 1992 Phys. Rev. B 45 10091
[58] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201
[59] Novikov V N and Sokolov A P 2006 Phys. Rev. B 74 064203
[60] Wang W H 2012 Prog. Mater. Sci. 57 487
[61] Wang W H 2006 J. Appl. Phys. 99 093506
[1] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[2] Heredity of clusters in the rapidly cooling processes of Al-doped Zr50Cu50 melts and its correlation with the glass-forming ability
Dadong Wen(文大东), Yonghe Deng(邓永和), Ming Gao(高明), and Zean Tian(田泽安). Chin. Phys. B, 2021, 30(7): 076101.
[3] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[4] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[5] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[6] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[7] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
[8] New criterion in predicting glass forming ability of various glass-forming systems
X. H. Du(杜兴蒿) and J. C. Huang(黄志青) . Chin. Phys. B, 2008, 17(1): 249-254.
No Suggested Reading articles found!