Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 015204    DOI: 10.1088/1674-1056/26/1/015204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Femtosecond laser induced nanostructuring of zirconium in liquid confined environment

Nisar Ali1,2,3,4, Shazia Bashir3, Umm-i-Kalsoom2,3,4,5, M. Shahid Rafique6, Narjis Begum7, Wolfgang Husinsky1, Ali Ajami1, Chandra S. R. Natahala1
1. Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna, Austria;
2. Department of Basic Sciences and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad, Pakistan;
3. Laser Laboratories, Centre for Advanced Studies in Physics, GC University 1-Church Road Lahore, Pakistan;
4. Department of Physics, GC University Kachehri Road Lahore, Pakistan;
5. Department of Physics, Riphah International University Islamabad(Lahore Campus), Lahore, Pakistan;
6. Department of Physics, University of Engineering and Technology Lahore, Pakistan;
7. Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
Abstract  The surface, structural, and mechanical properties of zirconium after irradiation with Ti:sapphire laser (800 nm, 30 fs, 1 kHz) have been investigated. The zirconium targets were exposed for a varying number of laser pulses ranging from 500 to 2000 at a fixed fluence of 3.6 J/cm2 corresponding to an intensity of 1.2×1014 W/cm2 in ambient environments of de-ionized water and propanol. A scanning electron microscope (SEM) was employed to investigate the surface morphology of the irradiated zirconium. The SEM analysis shows the formation of various kinds of features including nanoscale laser induced periodic surface structures (LIPSS), sponge like surface structure, flakes, conical structures, droplets, pores, and cavities. The energy dispersive x-ray spectroscopy (EDS) analysis exhibits the variation in chemical composition along with an enhanced diffusion of oxygen under both ambient conditions. The crystal structure and phase analyses of the exposed targets were explored by x-ray diffraction (XRD) and Raman spectroscopy techniques, respectively. The XRD analysis confirms the presence of various phases of zirconium hydride and zirconia after ablation in both de-ionized water and propanol. However, excessive hydrides are formed in the case of propanol. The Raman analysis supports the EDS and XRD results. It also reveals the presence of oxides (zirconia) after irradiation in both de-ionized water and propanol environments. The chemical reactivity of zirconium was significantly improved in the presence of liquids which were accountable for the growth of novel phases and modification in the chemical composition of the irradiated Zr. A nanohardness tester was employed to measure the nanohardness of the laser treated targets. The initial increase and then decrease in nanohardness was observed with an increase in the number of laser pulses in the de-ionized water environment. In the case of propanol, a continuous decrease in hardness was observed.
Keywords:  ambient environments      periodic structure      crystallinity      synthesis  
Received:  26 July 2016      Revised:  27 September 2016      Accepted manuscript online: 
PACS:  52.38.Mf (Laser ablation)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
Corresponding Authors:  Nisar Ali     E-mail:  chnisarali@gmail.com

Cite this article: 

Nisar Ali, Shazia Bashir, Umm-i-Kalsoom, M. Shahid Rafique, Narjis Begum, Wolfgang Husinsky, Ali Ajami, Chandra S. R. Natahala Femtosecond laser induced nanostructuring of zirconium in liquid confined environment 2017 Chin. Phys. B 26 015204

[1] Dauscher A, Feregotto V, Cordier P and Thorny A 1996 Appl. Surf. Sci. 96-98 410
[2] Karimzadeh R, Anvari J Z and Mansour N 2009 Appl. Phy. A 94 949
[3] Giron A G, Sola D and Peña J I 2016 Appl. Surf. Sci. 363 548
[4] Kanitz A, Hoppius J S, Gurevich E L and Ostendorf A 2016 Phys. Procedia 83 114
[5] Umm-i Kalsoom, Bashir S and Ali N 2013 Surf. Coat. Technol. 235 297
[6] Gurevich E L 2016 Appl. Surf. Sci. 374 56
[7] Bashir S, Rafique M S, Nathala C S and Husinsky W 2014 Appl. Surf. Sci. 290 53
[8] Root R G 1989 Laser-Induced Plasmas and Applications (New York:Marcel Dekker)
[9] Speight J 1952 Lange's Handbook of Chemistry (16th Edn.) (New York:McGraw-Hill Education)
[10] Murtaza G, Hussain S S, Rehman N U, Naseer S, Shafiq M and Zakaullah M 2011 Surf. Coat. Technol. 205 3012
[11] Barmina E V, Serkov A A, Stratakis E, Fotakis C, Stolyarov V N, Stolyarov I N and Shafeev G A 2012 Appl. Phys. A 106 1
[12] Vorobyev A Y and Guo C 2005 Phys. Rev. B 72 195422
[13] Tan D, Lin G, Liu Y, Teng Y, Zhuang Y, Zhu B, Zhao Q and Qiu J 2011 J. Nanopart. Resear. 13 1183
[14] Li M, Feng Z, Xiong G, Ying P, Xin Q and Li C 2001 J. Phys. Chem. 105 8107
[15] Huston E L and Sandrock G D 1980 J. Less Comm. Metal. 74 435
[16] Evans D G and Duan X 2006 Chem. Commun. 485-496 485
[17] Ali N, Bashir S, Umm-i-Kalsoom, Akram M and Mahmood K 2013 Appl. Surf. Sci. 270 49
[18] Asibu-Jr E K 2009 Principals of Lasers Materials Processing (New Jersey:Wiley)
[19] Bonse J, Rosenfeld A and Küger J 2009 J. Appl. Phys. 106 104910
[20] bandoki P B, Valette S, Audouard E and Benayoun S 2013 Appl. Surf. Sci. 270 197
[21] Bonse J, Hohm S, Rosenfeld A and Kruger J 2013 Appl. Phys. A 110 547
[22] Kim S H, Sohn I B and Jeong S 2011 Appl. Phys. A 103 1053
[23] Murphy R D, Torralva B, Adams D P and Yalisove S M 2013 Appl. Phys. Lett. 102 211101
[24] Ionin A A, Kudryashov S I, Makarov S V, Rudemko A A, Seleznev L V, Sinitsyn D V, Golosov E V, Kolobov Y R and Ligachev A E 2012 Appl. Phys. A 107 301
[25] Furusawa K, Takahashi K, Cho S H, Kumagai H, Midorikawa K and Obara M 2000 J. Appl. Phys. 87 1604
[26] Park H K, Grigoropoulos D P, Poon C C and Tam A C 1996 Appl. Phys. Lett. 68 596
[27] Geohegan D B, Puretzky A A, Duscher G and Pennycook S J 1998 Appl. Phys. Lett. 72 2987
[28] Romashevskiy S A, Ashitkov S I, Ovchinnikov A V, Kondratenko P S and Agranat M B 2016 Appl. Surf. Sci. 374 12
[29] Umm-i-Kalsoom, Bashir S, Ali N, Akram M, Mahmood K and Ahmad R 2012 Appl. Surf. Sci. 261 101
[30] Mansour N, Ghaleh K J and Ashkenasi D 2006 J. Laser Micro/Nanoengineer. 1 12
[31] Shen M Y, Crouch C H, Carey J E and Mazur E 2004 Appl. Phys. Lett. 85 5694
[32] Raillard L G B, Moore E R, Grandthyll S, Müller F and Mücklich F 2012 Surf. Coat. Technol. 207 102
[33] Ashraf M, Akhtar S M J, Khan A F, Ali Z and Qayyum A 2011 J. Alloy. Compd. 509 2414
[34] http://www.memsnet.org/material/zirconiumoxidezro2/
[35] Latif A, Rehman M K, Rafique M S and Bhatti K A 2011 Physica B 406 1713
[36] Khan I A, Hassan M, Ahmad R, Qayyum A, Murtaza G, Zakaullah M and Rawat R S 2008 Thin Solid Film. 516 8255
[37] Gurarie V N, Otsuka P H, Jamieson D N and Prawe S 2006 Nucl. Instr. Meth. Phys. Resear. B 242 421
[38] Onge L S, Sabsabi M and Cielo P 1998 Spectrochimica Acta B 53 407
[39] Mahmood K, Farid N, Ghauri I M, Afzal N, Idrees Y and Mubarik F E 2010 Physica Scripta 82 045606
[40] Umm-i-Kalsoom, Bashir S and Ali N 2013 Surf. Coat. Technol. 235 297
[41] Rafique M S, Rehman M K, Firdos T, Aslam K, Anwar M S, Imran M and Latif H 2007 Laser Phys. 17 1138
[42] Barberis P, Mrjean T M and Quintard P 1997 J. Nucl. Mater. 246 232
[43] Zhang W, Gan J, Hu Z, Yu W, Li Q, Sun J, Xu N, Jiadawu and Ying Z 2011 Appl. Spectr. 65 522
[44] Socrates G 2001 Infrared and Raman Characteristic Group Frequencies:Tables and Charts (3rd Edn.) (Chichester:Wiley)
[45] Amendola V and Meneghetti M 2009 Phys. Chem. Chem. Phys. 11 3805
[46] Shukla S and Seal S 2005 Inter. Mater. Rev. 50 45
[47] Umm-i-Kalsoom, Ahmad R, Ali N, Khan I A, Saleem S, Ikhlaq U and Khan N 2013 Plasma Sci. Technol. 15 666
[48] Warcholinski B and Gilewicz A 2009 J. Achiev. Mater. Manuf. Eng. 37 498
[49] Lim Y Y and Chaudhri M M 2002 Philos. Mag. A 82 2071
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[5] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[6] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[7] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[8] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[9] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[10] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[11] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[12] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[13] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[14] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[15] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
No Suggested Reading articles found!