Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028701    DOI: 10.1088/1674-1056/26/2/028701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Shifting curves based on the detector integration effect for x-ray phase contrast imaging

Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力)
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  In theory, we find that the actual function of the analyzer grating in the Talbot-Lau interferometer is segmenting the self-images of the phase grating and choosing integral areas, which make sure that each period of self-images in one detector pixel contributes the same signal to the detector. Furthermore, in the case of the lack of an analyzer grating, the shifting curves are still existent in theory as long as the number of fringes is non-integral in a detector pixel, which is a sufficient condition for creating shifting curve. The sufficient condition is available for not only the Talbot-Lau interferometer and the inverse geometry of Talbot-Lau interferometer, but also the x-ray phase contrast imaging system based on geometrical optics. In practical applications, we propose a method to improve the performances of the existing systems by employing the sufficient condition. This method can shorten the system length, is applicable to large period gratings, and can use the detectors with large pixels and large field of view. In addition, the experimental arrangement can be simplified due to the lack of an analyzer grating. In order to improve detection sensitivity and resolution, we also give an optimal fringe period. We believe that the theory and method proposed here is a step forward for x-ray phase contrast imaging.
Keywords:  x-ray phase contrast imaging      Talbot-Lau interferometer      x-ray imaging  
Received:  26 August 2016      Revised:  01 November 2016      Accepted manuscript online: 
PACS:  87.59.-e (X-ray imaging)  
  07.60.Ly (Interferometers)  
  42.30.Rx (Phase retrieval)  
  87.57.-s (Medical imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074172 and 11674232), the National Key Basic Research Program, China (Grant No. 2012CB825804), and the National Special Foundation for Major Science Instrument, China (Grant No. 61227802).
Corresponding Authors:  Jin-Chuan Guo     E-mail:  jcguo@szu.edu.cn

Cite this article: 

Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力) Shifting curves based on the detector integration effect for x-ray phase contrast imaging 2017 Chin. Phys. B 26 028701

[1] Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Soc. Am. 13 6296
[2] Zhou S A and Brahme A 2008 Phys. Med. 24 129
[3] Momose A 2005 Jpn. J. Appl. Phys. 44 6355
[4] Momose A, Yashiro Wataru, Takeda Y and Suzuki Y 2006 Jpn. J. Appl. Phys. 45 5254
[5] Wang S H, Margie P O, Momose A, Han H J, Hu R F, Wang Z L, Gao K, Zhang K, Zhu P P and Wu Z Y 2015 Chin. Phys. B 24 068703
[6] Zhang X D, Xia C J, Xiao X H and Wang Y J 2014 Chin. Phys. B 23 044501
[7] Bao Y, Wang Y, Gao K, Wang Z L, Zhu P P and Wu Z Y 2015 Chin. Phys. B 24 108702
[8] Li C, Li Zheng, Yu A M and Li C Q 2007 Chin. Phys. 16 2319
[9] Liu X, Guo J C, Peng X and Niu H B 2007 Chin. Phys. 16 1632
[10] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258
[11] Momose A, Kuwabara H and Yashiro W 2011 Appl. Phys. Express 4 066603
[12] Morimoto N, Fujino S, Ohshima K, Harada J, Hosoi T, Watanabe H and Shimura T 2014 Opt. Lett. 39 4297.
[13] Huang Z F, Kang K J, Zhang L, Chen Z Q, Ding F, Wang Z T and Fang Q G 2009 Phys. Rev. A 79 013815
[14] Olivo A, Arfelli F, Cantatore G, Longo R, Menk R H, Pani S, Prest M, Poropat P, Rigon L, Tromba G, Vallazza E and Castelli E 2011 Med. Phys. 28 1610
[15] Lei Y H, Liu X, Li J, Guo J C and Niu H B 2016 J. Micromech. Microeng. 26 5
[16] Liu X, Guo J C and Niu H B 2010 Chin. Phys. B 19 070701
[17] Liu X, Guo J C Lei Y H, Li J and Niu H B 2016 Chin. Phys. B 25 028704
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[6] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[7] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[8] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[9] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[10] Single-shot grating-based x-ray differential phase contrast imaging with a modified analyzer grating
Chen-Xi Wei(卫晨希), Zhao Wu(吴朝), Faiz Wali, Wen-Bin Wei(魏文彬), Yuan Bao(鲍园), Rong-Hui Luo(骆荣辉), Lei Wang(王磊), Gang Liu(刘刚), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(10): 108701.
[11] Simple phase extraction in x-ray differential phase contrast imaging
Xin Liu(刘鑫), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ji Li(李冀), Han-Ben Niu(牛憨笨). Chin. Phys. B, 2016, 25(2): 028704.
[12] Elemental x-ray imaging using Zernike phase contrast
Qi-Gang Shao(邵其刚), Jian Chen(陈健), Faiz Wali, Yuan Bao(鲍园), Zhi-Li Wang(王志立), Pei-Ping Zhu(朱佩平), Yang-Chao Tian(田扬超), Kun Gao(高昆). Chin. Phys. B, 2016, 25(10): 108702.
[13] Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage
Wang Sheng-Hao (王圣浩), Margie P. Olbinado, Atsushi Momose, Han Hua-Jie (韩华杰), Hu Ren-Fang (胡仁芳), Wang Zhi-Li (王志立), Gao Kun (高昆), Zhang Kai (张凯), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(6): 068703.
[14] Cosine fitting radiography and computed tomography
Li Pan-Yun (李盼云), Zhang Kai (张凯), Huang Wan-Xia (黄万霞), Yuan Qing-Xi (袁清习), Wang Yan (王研), Ju Zai-Qiang (鞠在强), Wu Zi-Yu (吴自玉), Zhu Pei-Ping (朱佩平). Chin. Phys. B, 2015, 24(6): 068704.
[15] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
No Suggested Reading articles found!