Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024208    DOI: 10.1088/1674-1056/26/2/024208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals

Si-Qi Zhang(张斯淇)1, Jing-Bin Lu(陆景彬)1, Yu Liang(梁禺)2, Ji Ma(马季)2, Hong Li(李宏)3, Xue Li(李雪)1, Xiao-Jing Liu(刘晓静)2, Xiang-Yao Wu(吴向尧)2, Xiang-Dong Meng(孟祥东)2
1 Institute of Physics, Jilin University, Changchun 130012, China;
2 Institute of Physics, Jilin Normal University, Siping 136000, China;
3 Institute of Physics, Northeast Normal University, Changchun 130012, China
Abstract  Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates r, are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semi-Dirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore, the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
Keywords:  two-dimensional photonic crystals      function dielectric constants      band gaps structures  
Received:  28 April 2016      Revised:  15 October 2016      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  78.20.Bh (Theory, models, and numerical simulation)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 61275047), the Research Project of Chinese Ministry of Education (Grant No. 213009A), and the Scientific and Technological Development Foundation of Jilin Province, China (Grant No. 20130101031JC).
Corresponding Authors:  Xiang-Yao Wu     E-mail:  wuxy2066@163.com

Cite this article: 

Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东) Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals 2017 Chin. Phys. B 26 024208

[1] Sun Y X, Kong X T and Fang Y T 2016 Opt. Commun. 376 115
[2] Francesco M and Andrea A 2014 Chin. Phys. B 23 047809
[3] Wang X, Chen L C, Liu Y H, Shi Y L and Sun Y 2015 Acta Phys. Sin. 64 174206 (in Chinese)
[4] Geng T, Wu N, Dong X M and Gao X M 2016 Acta Phys. Sin. 65 014213 (in Chinese)
[5] Lu C, Li W, Jiang X Y and Cao J C 2014 Chin. Phys. B 23 097802
[6] Chen Z H, Wang Y, Yang Y B, Qiao N, Wang Y C and Yu Z Y 2014 Nanoscale 6 14708
[7] Chen Z H, Qiao N, Yang Y B, Ye H, Liu S D, Wang W J and Wang Y C 2015 Sci. Rep. 5 12794
[8] Chen Z H, Qiao N, Wang Y, Liang L, Yang Y B, Ye H and Liu S D 2016 Appl. Energy 172 59
[9] Bittner S, Dietz B, Miski O M, Oria I P, Richter A and Schafer F 2010 Phys. Rev. B 82 014301
[10] Chan C T, Hang Z H and Huang X Q 2012 Adv. OptoElectron. 2012 313984
[11] Sakoda K 2012 Opt. Express 20 3898
[12] Sakoda K 2012 Opt. Express 20 25181
[13] Mei J, Wu Y, Chan C T and Zhang Z Q 2012 Phys. Rev. B 86 035141
[14] Liu F M, Lai Y, Huang X Q and Chan C T 2011 Phys. Rev. B 84 224113
[15] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904
[16] Sepkhanov R A, Nilsson J and Beenakker C W J 2008 Phys. Rev. B 78 045122
[17] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233
[18] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M and Szameit A 2013 Nature 496 196
[19] Pardo V and Pickett W E 2009 Phys. Rev. Lett. 102 166803
[20] Banerjee S, Singh R R P, Pardo V and Pickett W E 2009 Phys. Rev. Lett. 103 016402
[21] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[22] Wu X Y, Zhang B J, Yang J H, Liu X J, Ba N, Wu Y H and Wang Q C 2011 Physica E 43 1694
[23] Wu X Y, Zhang B J, Liu X J, Ba N, Zhang S Q and Wang J 2012 Physica E 44 1223
[24] Wu X Y, Zhang B J, Yang J H, Zhang S Q, Liu X J, Wang J, Ba N, Hua Z and Yin X G 2012 Physica E 45 166
[25] Wu X Y, Zhang B J, Liu X J, Zhang S Q, Wang J, Ba N, Xiao L and Li H 2012 Physica E 46 133
[26] Wu X Y, Zhang S Q, Zhang B J, Liu X J, Wang J, Li H, Ba N, Yin X G and Li J W 2013 Physica E 53 1
[27] Ma J, Wu X Y, Li H B, Li H, Liu X J, Zhang S Q, Chen W J and Wu Y H 2015 Opt. Mater. 48 59
[28] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press) p. 32
[29] Boyd R W 2010 Nonlinear Optics (Acad. Press) pp. 207-228
[30] Ho K M, Chan C T and Soukoulis C M 1990 Phys. Rev. Lett. 65 3152
[31] Zhang Z and Satpathy S 1990 Phys. Rev. Lett. 65 2650
[32] Ochiai T and Onoda M 2009 Phys. Rev. B 80 155103
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[3] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[6] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[9] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[10] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[11] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[12] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[13] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[14] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[15] Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals
Ahmed Nagaty, Ahmed Mehaney, Arafa H Aly. Chin. Phys. B, 2018, 27(9): 094301.
No Suggested Reading articles found!