Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 014302    DOI: 10.1088/1674-1056/26/1/014302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Membrane-based acoustic metamaterial with near-zero refractive index

Yi-Feng Li(李义丰)1,2, Jun Lan(蓝君)1, Hui-Yang Yu(余辉洋)1, Xiao-Zhou Liu(刘晓宙)3, Jia-Shu Zhang(张嘉澍)4
1. Department of Computer Science and Technology, Nanjing Tech. University, Nanjing 211800, China;
2. Key Laboratory of Modern Acoustics, Ministry of Education, Nanjing University, Nanjing 210093, China;
3. Key Laboratory of Modern Acoustics, Ministry of Education, Institute of Acoustics and School of Physics, Nanjing University, Nanjing 210093, China;
4. Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S102TN, UK
Abstract  

We investigate a one-dimensional acoustic metamaterial with a refractive index of near zero (RINZ) using an array of very thin elastic membranes located along a narrow waveguide pipe. The characteristics of the effective density, refractive index, and phase velocity of the metamaterial indicate that, at the resonant frequency fm, the metamaterial has zero mass density and a phase transmission that is nearly uniform. We present a mechanism for dramatic acoustic energy squeezing and anomalous acoustic transmission by connecting the metamaterial to a normal waveguide with a larger cross-section. It is shown that at a specific frequency f1, transmission enhancement and energy squeezing are achieved despite the strong geometrical mismatch between the metamaterial and the normal waveguide. Moreover, to confirm the energy transfer properties, the acoustic pressure distribution, acoustic wave reflection coefficient, and energy transmission coefficient are also calculated. These results prove that the RINZ metamaterial provides a new design method for acoustic energy squeezing, super coupling, wave front transformation, and acoustic wave filtering.

Keywords:  acoustic metamaterial      refractive index of near zero (RINZ)      energy squeezing      transmission enhancement  
Received:  12 August 2016      Revised:  10 October 2016      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  68.60.Bs (Mechanical and acoustical properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61571222, 11104142, and 11474160), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161009), the Qing Lan Project of Jiangsu Province, China, and the Six Talent Peaks Project of Jiangsu Province, China.

Corresponding Authors:  Yi-Feng Li     E-mail:  lyffz4637@163.com

Cite this article: 

Yi-Feng Li(李义丰), Jun Lan(蓝君), Hui-Yang Yu(余辉洋), Xiao-Zhou Liu(刘晓宙), Jia-Shu Zhang(张嘉澍) Membrane-based acoustic metamaterial with near-zero refractive index 2017 Chin. Phys. B 26 014302

[1] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2009 Phys. Lett. A 373 4464
[2] Fan L, Zhang S Y and Zhang H 2011 Chin. Phys. Lett. 28 104301
[3] Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134
[4] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nat. Mater. 5 452
[5] Ding C L and Zhao X P 2009 Acta Phys. Sin. 58 6351(in Chinese)
[6] Fan L, Ge H, Zhang S Y, Gao H F, Liu Y H and Zhang H 2013 J. Acoust. Soc. Am. 133 3846
[7] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2009 J. Phys-Condens. Mat. 21 175704
[8] Seo Y M, Park J J, Lee S H, Park C M, Kim C K and Lee S H 2012 J. Appl. Phys. 111 023504
[9] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2010 Phys. Rev. Lett. 104 054301
[10] Fan L, Chen Z, Deng Y C, Ding J, Ge H, Zhang S Y, Yang Y T and Zhang H 2014 Appl. Phys. Lett. 105 041904
[11] Yang Z, Dai H M, Chan N H, Ma G C and Sheng P 2010 Appl. Phys. Lett. 96 041906
[12] Qian F, Quan L, Wang L W, Liu X Z and Gong X F 2016 Chin. Phys. B 25 024301
[13] Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
[14] Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
[15] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[16] Li Y and Engheta N 2014 Phys. Rev. B 90 201107
[17] Silveirinha M and Engheta N 2006 Phys. Rev. Lett. 97 157403
[18] Edwards B, Alu A, Young M E, Silveirinha M and Engheta N 2008 Phys. Rev. Lett. 100 033903
[19] Wu Y and Li J C 2013 Appl. Phys. Lett. 102 183105
[20] Wang T T, Luo J, Gao L, Xu P and Lai Y 2014 Appl. Phys. Lett. 104 211904
[21] Park C M and Lee S H 2013 Appl. Phys. Lett. 102 241906
[22] Bongard F, Lissek H and Mosig J R 2010 Phys. Rev. B 82 094306
[23] Fleury R and Alu A 2013 Phys. Rev. Lett. 111 0555501
[24] Fleury R, Sieck C F, Haberman M R and Alu A 2012 Proceeding of the 164th Meeting of the Acoustical Society of America, October 22-26, 2012 Kansas City, Missouri
[25] Jing Y, Xu J and Fang N X 2012 Phys. Lett. A 376 2834
[26] Lee S H and Wright O B 2016 Phys. Rev. B 93 024302
[27] Blackstock D T 2000 Fundamentals of Physical Acoustics (New York:John Wiley and Sons)
[1] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[2] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[3] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[4] Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators
Dian-Long Yu(郁殿龙), Hui-Jie Shen(沈惠杰), Jiang-Wei Liu(刘江伟), Jian-Fei Yin(尹剑飞), Zhen-Fang Zhang(张振方), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(6): 064301.
[5] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[6] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li (李黎), Wen Ji-Hong (温激鸿), Cai Li (蔡力), Zhao Hong-Gang (赵宏刚), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(1): 014301.
No Suggested Reading articles found!