Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 120304    DOI: 10.1088/1674-1056/25/12/120304
GENERAL Prev   Next  

Controlled unknown quantum operations on hybrid systems

Yong He(何勇)1, Ming-Xing Luo(罗明星)2,3
1. Department of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China;
2. Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu 610031, China;
3. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
Abstract  

Any unknown unitary operations conditioned on a control system can be deterministically performed if ancillary subspaces are available for the target systems[Zhou X Q, et al. 2011 Nat. Commun. 2 413]. In this paper, we show that previous optical schemes may be extended to general hybrid systems if unknown operations are provided by optical instruments. Moreover, a probabilistic scheme is proposed when the unknown operation may be performed on the subspaces of ancillary high-dimensional systems. Furthermore, the unknown operations conditioned on the multi-control system may be reduced to the case with a control system using additional linear circuit complexity. The new schemes may be more flexible for different systems or hybrid systems.

Keywords:  unknown unitary operations      hybrid systems      multi-control system      circuit complexity  
Received:  13 June 2016      Revised:  24 July 2016      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61303039 and 61201253), Chunying Fellowship, and Fundamental Research Funds for the Central Universities, China (Grant No. 2682014CX095).

Corresponding Authors:  Yong He     E-mail:  heyongmath@163.com

Cite this article: 

Yong He(何勇), Ming-Xing Luo(罗明星) Controlled unknown quantum operations on hybrid systems 2016 Chin. Phys. B 25 120304

[1] Deutsch D 1989 Proc. R. Soc. Lond. A 425 73
[2] Deutsch D and Jozsa R 1992 Proc. R. Soc. London, Ser. A 439 553
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[4] Knill E, Laffamme R and Milburn G 2001 Nature 409 46
[5] Kitaev A, Shen A and Vyalyi M 2002 Classical and quantum computation (New York:American Mathematical Society)
[6] Shor P W 1995 Phys. Rev. A 52 2493
[7] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[8] Sheng Y B, Zhou L and Cui C 2015 Chin. Phys. B 24 120306
[9] Cao X and Shang Y 2014 Chin. Phys. Lett. 31 110302
[10] Deng F G and Ren B C 2015 Acta Phys. Sin. 64 160303 (in Chinese)
[11] Feynman R P 1982 Int. J. Theor. Phys. 21 467
[12] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P W, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A 52 3457
[13] Vartiainen J J, Mottonen M and Salomaa M M 2004 Phys. Rev. Lett. 92 177902
[14] Zhou X Q, Ralph T C, Kalasuwan P, Zhang M, Peruzzo A, Lanyon B P and O'Brien J L 2011 Nat. Commun. 2 413
[15] Araúo M, Feix A, Costa F and Brukner Č 2014 New J. Phys. 16 093026
[16] Friis N, Dunjko V, Dur W and Briegel H J 2014 Phys. Rev. A 89 030303
[17] Chiribella G, D'Ariano G M, Perinotti P and Valiron B 2013 Phys. Rev. A 88 022318
[18] Procopio L M, Moqanaki A, Arau'jo M, Costa F, Calafell I A, Dowd E G, Hamel D R, Rozema L A, Brukner C and Walther P 2015 Nat. Commun. 6 7913
[19] Vitelli C, Spagnolo N, Aparo L, Sciarrino F, Santamato E and Marrucci L 2013 Nat. Photon. 7 521
[20] Passaro E, Vitelli C, Spagnolo N, Sciarrino F, Santamato E and Marrucci L 2013 Phys. Rev. A 88 062321
[21] Luo M X, Ma S Y, Chen X B and Wang X 2015 Phys. Rev. A 91 042326
[22] Briegel H J, Calarco T, Jaksch D, Cirac J I and Zoller P 2000 J. Mod. Opt. 47 415
[23] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[24] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[25] Houck A A, Tureci H E and Koch J 2012 Nat. Phys. 8 292
[26] Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J, Jamieson D N, Dzurak A S and Morello A 2012 Nature 489 541
[27] Barenco A, Bennett C H, Cleve R, et al. 1995 Phys. Rev. A 52 3457
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[4] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[5] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[9] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[10] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[11] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[12] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[13] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[14] Optical scheme to demonstrate state-independent quantum contextuality
Ya-Ping He(何亚平), Deng-Ke Qu(曲登科), Lei Xiao(肖磊), Kun-Kun Wang(王坤坤), and Xiang Zhan(詹翔). Chin. Phys. B, 2022, 31(3): 030305.
[15] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
No Suggested Reading articles found!