Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118503    DOI: 10.1088/1674-1056/25/11/118503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures

Kai Lu(吕凯)1,3, Jing Chen(陈静)1, Yuping Huang(黄瑜萍)2, Jun Liu(刘军)2, Jiexin Luo(罗杰馨)1, Xi Wang(王曦)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
2 Key Laboratory for RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou 310037, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Radio-frequency (RF) characteristics under ultra-low temperature of multi-finger partially depleted silicon-on-insulator (PD SOI) n-type metal-oxide-semiconductor field-effect transistors (nMOSFETs) with tunnel diode body-contact (TDBC) structure and T-gate body-contact (TB) structure are investigated in this paper. When operating at 77 K, TDBC device suppresses floating-body effect (FBE) as well as the TB device. For TB device and TDBC device, cut-off frequency (fT) improves as the temperature decreases to liquid-helium temperature (77 K) while that of the maximum oscillation frequency (fMAX) is opposite due to the decrease of the unilateral power gain. While operating under 77 K, fT and fMAX of TDBC device reach to 125 GHz and 77 GHz, representing 8% and 15% improvements compared with those of TB device, respectively, which is mainly due to the lower parasitic resistances and capacitances. The results indicate that TDBC SOI MOSFETs could be considered as promising candidates for analog and RF applications over a wide range of temperatures and there is immense potential for the development of RF CMOS integrated circuits for cryogenic applications.

Keywords:  partially depleted silicon-on-insulator      radio-frequency      body contact      ultra-low temperature  
Received:  13 April 2016      Revised:  18 July 2016      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  84.40.Lj (Microwave integrated electronics)  
Corresponding Authors:  Jing Chen     E-mail:  jchen@mail.sim.ac.cn

Cite this article: 

Kai Lu(吕凯), Jing Chen(陈静), Yuping Huang(黄瑜萍), Jun Liu(刘军), Jiexin Luo(罗杰馨), Xi Wang(王曦) Ultra-low temperature radio-frequency performance of partially depleted silicon-on-insulator n-type metal-oxide-semiconductor field-effect transistors with tunnel diode body contact structures 2016 Chin. Phys. B 25 118503

[1] Marshall A and Natarajan S 2002 SOI Design:Analog, Memory and Digital Techniques (New York:Kluwer Academic)
[2] Rozeau O, Jomaah J and Boussey J 2000 IEEE International SOI Conference, October 2-5, 2000, pp.124-125
[3] Tseng Y C, Huang W M, Mendicino M, Welch P, Ⅱderem V and Woo J C S 1999 LSI Technology, Digest of Technical Papers, June 14-16, 1999, pp. 27-28
[4] Dongwook S and Fossum J G 1995 IEEE Trans. Electron Dev. 42 728
[5] Chen J, Luo J X, Wu Q Q, Chai Z, Yu T, Dong Y J and Wang X 2011 IEEE Electron Dev. Lett. 32 1346
[6] Lu K, Chen J, Luo J X, Liu J, Wu Q Q, Chai Z and Wang X 2014 IEEE Electron Dev. Lett. 35 015
[7] Lu K, Chen J, Luo J X, He W W, Huang J Q, Chai Z and Wang X 2015 Chin. Phys. B 24 088501
[8] Esaki L 1958 Phys. Rev. 109 603
[9] Gaensslen F H, Rideout V L, Walker E J and Walker J L 1977 IEEE Trans. Electron Dev. 24 218
[10] Lederer D, Flandre D and Raskin J P 2005 Semicond. Sci. Technol. 20 469
[11] Valentin R, Dubois E, Raskin J P, Larrieu G, Dambrine G, Lim T C, Breil N and Danneville F 2008 IEEE Trans. Electron Dev. 55 1192
[12] Mason S J 1954 Trans. IRE Prof. Group Circuit Theory T-1 020
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[4] Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance
Hui-Fang Xu(许会芳), Wen Sun(孙雯), and Na Wang(王娜). Chin. Phys. B, 2021, 30(7): 078503.
[5] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[6] Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Hong-Yu Wang(王宏宇), Shan-Guang Guo(郭善广), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2019, 28(2): 024701.
[7] Analysis of non-uniform hetero-gate-dielectric dual-material control gate TFET for suppressing ambipolar nature and improving radio-frequency performance
Hui-Fang Xu(许会芳), Jian Cui(崔健), Wen Sun(孙雯), Xin-Feng Han(韩新风). Chin. Phys. B, 2019, 28(10): 108501.
[8] Ultraviolet discharges from a radio-frequency system for potential biological/chemical applications
Joseph Ametepe, Sheng Peng, Dennis Manos. Chin. Phys. B, 2017, 26(8): 083302.
[9] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[10] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai (吕凯), Chen Jing (陈静), Luo Jie-Xin (罗杰馨), He Wei-Wei (何伟伟), Huang Jian-Qiang (黄建强), Chai Zhan (柴展), Wang Xi (王曦). Chin. Phys. B, 2015, 24(8): 088501.
[11] Modeling of the nanoparticle coagulation in pulsed radio-frequency capacitively coupled C2H2 discharges
Liu Xiang-Mei (刘相梅), Li Qi-Nan (李奇楠), Li Rui (李瑞). Chin. Phys. B, 2015, 24(7): 075204.
[12] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[13] Investigation of high sensitivity radio-frequency readout circuit based on AlGaN/GaN high electron mobility transistor
Zhang Xiao-Yu (张晓渝), Tan Ren-Bing (谭仁兵), Sun Jian-Dong (孙建东), Li Xin-Xing (李欣幸), Zhou Yu (周宇), Lü Li (吕利), Qin Hua (秦华). Chin. Phys. B, 2015, 24(10): 105201.
[14] Radio-frequency compressed electron pulse-width characterization by cross-correlation between electron bunches and laser-induced plasma
Li Jing (李静), Pei Min-Jie (裴敏洁), Qi Da-Long (齐大龙), Qi Ying-Peng (齐迎朋), Yang Yan (杨岩), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2014, 23(12): 124209.
[15] Radio-frequency transistors from millimeter-scale graphene domains
Wei Zi-Jun (魏子钧), Fu Yun-Yi (傅云义), Liu Jing-Bo (刘竞博), Wang Zi-Dong (王紫东), Jia Yue-Hui (贾越辉), Guo Jian (郭剑), Ren Li-Ming (任黎明), Chen Yuan-Fu (陈远富), Zhang Han (张酣), Huang Ru (黄如), Zhang Xing (张兴). Chin. Phys. B, 2014, 23(11): 117201.
No Suggested Reading articles found!