Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 118401    DOI: 10.1088/1674-1056/25/11/118401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Parasitic effects of air-gap through-silicon vias in high-speed three-dimensional integrated circuits

Xiaoxian Liu(刘晓贤), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进)
School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  In this paper, ground-signal-ground type through-silicon vias (TSVs) exploiting air gaps as insulation layers are designed, analyzed and simulated for applications in millimeter wave. The compact wideband equivalent-circuit model and passive elements (RLGC) parameters based on the physical parameters are presented with the frequency up to 100 GHz. The parasitic capacitance of TSVs can be approximated as the dielectric capacitance of air gaps when the thickness of air gaps is greater than 0.75 μm. Therefore, the applied voltage of TSVs only needs to achieve the flatband voltage, and there is no need to indicate the threshold voltage. This is due to the small permittivity of air gaps. The proposed model shows good agreement with the simulation results of ADS and Ansoft's HFSS over a wide frequency range.
Keywords:  three-dimensional integrated circuits      through-silicon vias      air gaps      high frequency  
Received:  23 May 2016      Revised:  30 June 2016      Accepted manuscript online: 
PACS:  84.30.-r (Electronic circuits)  
  84.30.Bv (Circuit theory)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the National Natural Science Foundation of China (Grant Nos. 61376039, 61334003, 61574104, and 61474088).
Corresponding Authors:  Zhangming Zhu     E-mail:  zmyh@263.net

Cite this article: 

Xiaoxian Liu(刘晓贤), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进) Parasitic effects of air-gap through-silicon vias in high-speed three-dimensional integrated circuits 2016 Chin. Phys. B 25 118401

[1] Dong G, Shi T, Zhao Y B and Yang Y T 2015 Chin. Phys. B 24 056601
[2] Ma X K, Wang F Q and Liu W 2015 Chin. Phys. B 24 118401
[3] Yang Y T, Wu W S and Dong G 2015 Acta Phys. Sin. 64 026601(in Chinese)
[4] Wang Z H and Yu Y J 2015 Acta Phys. Sin. 64 238401(in Chinese)
[5] Liu X X, Zhu Z M, Yang Y T, Wang F J and Ding R X 2014 Chin. Phys. B 23 038401
[6] Qian L B, Zhu Z M, Xia Y S, Ding R X and Yang Y T 2014 Chin. Phys. B 23 038402
[7] Wang H G, Bao B C and Chen M 2014 Chin. Phys. B 23 087504
[8] Zhu Z M and Liu S B 2012 Chin. Phys. B 21 028401
[9] Katti G, Stucchi M, Meyer K D and Dehaene W 2010 IEEE Trans. Electron Devices 57 256
[10] Liu E X, Li E P, Ewe W B, Lee H M, Lim T G and Gao S 2011 IEEE Trans. Microw. Theory Technol. 59 1454
[11] Cheng T Y, Wang C D, Chiou Y P and Wu T L 2012 IEEE Microw. Wireless Compon. Lett. 22 303
[12] Xu C, Li H, Suaya R and Banerjee K 2010 IEEE Trans. Electron Devices 57 3405
[13] Ndip I, Curran B, Lobbicke K, Guttowski S, Reichl H, Lang K D and Henke H 2011 IEEE Trans. Compon. Packaging Manuf. Technol. 1 181
[14] Kim J, Park J S, Cho J, Song E, Cho J H, Kim H, Song T, Lee J, Lee H, Park K, Yang S, Suh M S, Byun K Y and Kim J H 2011 IEEE Trans. Compon. Packaging Manuf. Technol. 1 181
[15] Kim H, Cho J, Kim M, Kim K, Lee J, Lee H, Park K, Choi K, Bae H C, Kim J and Kim J 2012 IEEE Trans. Compon. Packaging Manuf. Technol. 2 1672
[16] Liu X X, Zhu Z M, Yang Y T and Ding R X 2015 IEEE Microw. Wirel. Compon. Lett. 25 424
[17] Liu X X, Zhu Z M, Yang Y T and Ding R X 2015 IEEE Microw. Wirel. Compon. Lett. 25 493
[18] Ryu C, Chung D, Lee J, Lee K, Oh T and Kim J 2005 Proceedings of14 th Electronic Performance of Electronic Packaging, Texas, America, October 24-26, 2005, p. 151
[19] Chen Q, Huang C, Wu D, Tan Z and Wang Z 2013 IEEE Trans. Electron Devices 60 1421
[20] Huang C, Chen Q and Wang Z 2013 IEEE Electron Dev. Lett. 34 441
[21] Chen Q, Huang C, Tan Z and Wang Z 2013 IEEE Trans. Compon. Packaging Manuf. Technol. 3 724
[22] Zhang L, Lim D, Li H, Gao S and Tan C 2012 Jpn. J. Appl. Phys. 51 04DB03
[23] Johnson H 2000 High Speed Dignal System Design (New York:John Wiley& Sons)
[24] Paul C R 2010 Inductance:Loop and Partial (New Jersey:John Wiley& Sons)
[25] Liang T, Hall S, Heck H and Brist G 2006 Proceedings of Microwave Symposium Digest, San Francisco, America, June 11-16, 2006, p. 1780
[26] Sze S M 2007 Physics of Semiconductor Devices (New York:John Wiley& Sons)
[27] Katti G, Stucchi M, Velenis D, Soree B, Meyer K D and Dehaene W 2010 IEEE Electron Dev. Lett. 32 563
[28] Manual of ANSOFT HFSS v15 [Online], Available:http://www.ansoft.com/products/hf/hfss/
[29] Brocard M, Maitre P L, Bermond C, Bar P, Anciant R, Farcy A, Lacrevaz T, Leduc P, Coudrain P, Hotellier N, Jamaa H B, Cheramy S, Sillon N, Marin J and Flechet B 2012 Proceedings of 62th Electronic Components and Technology Conference (ECTC), California, America, May 29-June 1, 2012, p. 665
[1] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[2] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[3] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[4] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[5] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[6] Bifurcation and chaos in high-frequency peak current mode Buck converter
Chang-Yuan Chang(常昌远), Xin Zhao(赵欣), Fan Yang(杨帆), Cheng-En Wu(吴承恩). Chin. Phys. B, 2016, 25(7): 070504.
[7] High frequency characteristics of (Ni75Fe2)x(ZnO)1-x granular thin films with tunable damping coefficient
Li Wen-Chun (李文春), Zuo Ya-Lu (左亚路), Liu Xiao-Hong (刘晓虹), Wei Qing-Qing (魏清清), Zhou Xue-Yun (周雪云), Yao Dong-Sheng (姚东升). Chin. Phys. B, 2015, 24(4): 047503.
[8] Influence of magnetic layer thickness on [Fe80Ni20–O/SiO2]n multilayer thin films
Wei Jian-Qing (魏建清), Geng Hao (耿昊), Xu Lei (徐磊), Wang Lai-Sen (王来森), Chen Yuan-Zhi (陈远志), Yue Guang-Hui (岳光辉), Peng Dong-Liang (彭栋梁). Chin. Phys. B, 2014, 23(8): 087504.
[9] Through-silicon-via crosstalk model and optimization design for three-dimensional integrated circuits
Qian Li-Bo (钱利波), Zhu Zhang-Ming (朱樟明), Xia Yin-Shui (夏银水), Ding Rui-Xue (丁瑞雪), Yang Yin-Tang (杨银堂). Chin. Phys. B, 2014, 23(3): 038402.
[10] High frequency forcing on nonlinear systems
Yao Cheng-Gui (姚成贵), He Zhi-Wei (何志威), Zhan Meng (占萌). Chin. Phys. B, 2013, 22(3): 030503.
[11] High frequency behaviours and Mössbauer study of field annealed FeCuNbSiB alloy ribbons
Ma Xiao-Ming(马小明), Li Zhi-Wei(李志伟), Wei Jian-Qiang(位建强), Wang Tao(王涛), and Li Fa-Shen(李发伸). Chin. Phys. B, 2010, 19(9): 097401.
[12] Properties study of LiNbO3 lateral field excited device working on thickness extension mode
Zhang Zhi-Tian(张志甜), Zhang Chao(张超), Wang Wen-Yan(王文炎), Ma Ting-Feng(马廷锋), Liu Yan(刘岩), and Feng Guan-Ping(冯冠平). Chin. Phys. B, 2010, 19(9): 097701.
[13] Noise in a coupling electromagnetic detecting system for high frequency gravitational waves
Li Jin(李瑾), Li Fang-Yu(李芳昱), and Zhong Yuan-Hong(仲元红). Chin. Phys. B, 2009, 18(3): 922-926.
[14] Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao (高艳涛), Zhang Xiao-Dan (张晓丹), Zhao Ying (赵颖), Sun Jian (孙健), Zhu Feng (朱峰), Wei Chang-Chun (魏长春), Chen Fei (陈飞). Chin. Phys. B, 2006, 15(5): 1110-1113.
No Suggested Reading articles found!