Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117102    DOI: 10.1088/1674-1056/25/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current spreading in GaN-based light-emitting diodes

Qiang Li(李强)1,2, Yufeng Li(李虞锋)1,2, Minyan Zhang(张敏妍)2, Wen Ding(丁文)1,2, Feng Yun(云峰)1,2
1 Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi'an Jiaotong University, Xi'an 710049, China;
2 Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We have investigated the factors affecting the current spreading length (CSL) in GaN-based light-emitting diodes (LEDs) by deriving theoretical expressions and performing simulations with APSYS. For mesa-structure LEDs, the effects of both indium tin oxide (ITO) and n-GaN are taken into account for the first time, and a new Q factor is introduced to explain the effects of different current flow paths on the CSL. The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer, or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer. The results provide theoretical support for calculating the CSL clearly and directly. For vertical-structure LEDs, the effects of resistivity and thickness of the CSL on the internal quantum efficiency (IQE) have been analyzed. The theoretical expression relating current density and the parameters (resistivity and thickness) of the CSL is obtained, and the results are then verified by simulation. The IQE under different current injection conditions is discussed. The effects of CSL resistivity play a key role at high current injection, and there is an optimal thickness for the largest IQE only at a low current injection.
Keywords:  current spreading length      light-emitting diodes      indium tin oxide      quantum efficiency  
Received:  30 January 2016      Revised:  27 July 2016      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  73.61.Ey (III-V semiconductors)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), the National Natural Science Foundation of China (Grant No. 61404101), and the China Postdoctoral Science Foundation (Grant No. 2014M562415).
Corresponding Authors:  Feng Yun     E-mail:  fyun2010@mail.xjtu.edu.cn

Cite this article: 

Qiang Li(李强), Yufeng Li(李虞锋), Minyan Zhang(张敏妍), Wen Ding(丁文), Feng Yun(云峰) Current spreading in GaN-based light-emitting diodes 2016 Chin. Phys. B 25 117102

[1] Kudry Y Y and Zinovchuk A V 2011 Semicond. Sci. Technol. 26 095007
[2] Liu H H, Chen P R, Lee G Y and Chyi J I 2011 IEEE Electron Dev. Lett. 32 1409
[3] Kim H, Park S J and Hwang H 2001 IEEE Trans. Electron Devices 48 1065
[4] Yun J S, Hwang S M and Shim J I 2007 Proc. SPIE 6841 68410L
[5] Chen J C, Shen G J, Hwu F S, Chen H I, Sheu J K, Lee T X and Sun C C 2009 Opt. Rev. 16 213
[6] Seo T H, Lee K J, Park A H, Hong C H, Suh E K, Chae S J, Lee Y H, Cuong T V, Pham V H, Chung J S, Kim E J and Jeon S R 2011 Opt. Express 19 23111
[7] Tun C J, Sheu J K, Pong B J, Lee M L, Lee M Y, Hsieh C K, Hu C C and Chi G C 2006 IEEE Photonics Technol. Lett. 18 274
[8] Seo D J, Shim J P, Choi S B, Seo T H, Suh E K and Lee D S 2012 Opt. Express 20 A991
[9] Perks R M, Porch A and Morgan D V 2006 J. Appl. Phys. 100 083109
[10] Cao X A, Stokes E B, Sandvik P, Taskar N, Kietchmer J and Walker D 2002 Solid State Electron. 46 1235
[11] Kim H, Cho J, Lee J W, Yoon S, Kim H, Sone C, Park Y and Seong T Y 2007 Appl. Phys. Lett. 90 063510
[12] Kim H and Lee S N 2010 J. Electrochem. Soc. 157 H562
[13] Wang P, Wei W, Cao B, Gan Z Y and Liu S 2010 Opt. Laser Technol. 42 737
[14] Huang S J, Fan B F, Chen Z M, Zheng Z Y, Luo H T and Wu Z S 2013 J. Display Technol. 9 266
[15] Li C K, Rosmeulen M, Simoen E and Wu Y R 2014 IEEE Trans. Electron Devices 61 511
[16] Li C K and Wu Y R 2012 IEEE Trans. Electron Devies 59 400
[17] Chandramohan S, Ko K B, Yang Y H, Ryu B D, Katharria Y S, Kim T Y, Cho B J and Hong C H 2014 J. Appl. Phys. 115 054503
[18] Kim S J, Kim K H and Kim T G 2013 Opt. Express 21 8062
[19] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[20] Iveland J, Martinelli L, Peretti J, Speck J S and Weisbuch C 2013 Phys. Rev. Lett. 110 177406
[21] Vampola K J, Iza M, Keller S, Denbaars S P and Nakamura S 2009 Appl. Phys. Lett. 94 061116
[22] Ryu H Y, Shin D S and Shim J I 2012 Appl. Phys. Lett. 100 131109
[23] Wu Y R, Shivaraman R, Wang K C and Speck J S 2012 Appl. Phys. Lett. 101 083505
[24] Wang L, Lu C, Lu J, Liu L, Liu N, Chen Y, Zhang Y, Gu E and Hu X 2011 Opt. Express 19 14182
[25] Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
[26] Lin R M, Yu S F, Chang S J and Chiang T H 2012 Appl. Phys. Lett. 101 081120
[27] Ueda T, Ishida M, Tamura S, Fujimoto Y, Yuri M, Saito T and Ueda D 2003 Phys. Stat. Sol. C 7 2219
[28] Zhou L, Epler J E, Krames M R, Goetz W, Gherasimova M, Ren Z, Han J, Kneissl M and Johnson N M 2006 Appl. Phys. Lett. 89 241113
[29] Schubert E F 2006 Light-Emitting Diodes, 2nd edn (Cambridge:Cambridge University Press) p. 138
[30] Kudryk Y Y, Tkachenko A K and Zinovchuk A V 2012 Semicond. Sci. Technol. 27 055013
[31] Liu M L, Min Q Y and Ye Z Q 2012 Acta Phys. Sin. 61 178503(in Chinese)
[32] Wang J X, Wang L, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 118105
[33] Huang K H, Yu J G, Kuo C P, Fletcher R M, Osentowski T D, Stinson L J, Craford M G and Liao A S H 1922 Appl. Phys. Lett. 61 1045
[34] Ebong A, Arthur S, Downey E, Cao X A, LeBoeuf S and Merfeld D W 2003 Solid State Electron. 47 1817
[35] Guo X and Schubert E F 2001 J. Appl. Phys. 90 4191
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[3] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[4] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[5] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[6] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[7] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[8] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[9] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[10] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[11] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[12] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[13] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[14] Efficiency enhancement of ultraviolet light-emitting diodes with segmentally graded p-type AlGaN layer
Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Guang Li(李光), Xing-Jun Luo(罗幸君), Hu Wang(汪虎), Jia-Kai Xiao(肖稼凯), Jia-Qi Guo(郭佳琦), Xing-Fu Wang(王幸福), Rui Hao(郝锐), Han-Xiang Yi(易翰翔), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(1): 018503.
[15] Sputtered gold nanoparticles enhanced quantum dot light-emitting diodes
Abida Perveen, Xin Zhang(张欣), Jia-Lun Tang(汤加仑), Deng-Bao Han(韩登宝), Shuai Chang(常帅), Luo-Gen Deng(邓罗根), Wen-Yu Ji(纪文宇), Hai-Zheng Zhong(钟海政). Chin. Phys. B, 2018, 27(8): 086101.
No Suggested Reading articles found!