Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 116801    DOI: 10.1088/1674-1056/25/11/116801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of He trapping in η-Fe2C

Bing-Ling He(赫丙玲)1, Jin-Long Wang(王金龙)1, Zhi-Xue Tian(田之雪)2, Li-Juan Jiang(蒋利娟)1, Wei Song(宋薇)1, Bin Wang(王斌)1
1 College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China;
2 College of Physics and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China
Abstract  The distribution of He in η-Fe2C has been studied by first-principles calculations. The formation energies of interstitial He and substitutional He (replacing Fe) are 3.76 eV and 3.49 eV, respectively, which are remarkably smaller than those in bcc Fe, indicating that He is more soluble in η-Fe2C than in bcc Fe. The binding potencies of both a substitutional-interstitial He pair (1.28 eV) and a substitutional-substitutional He pair (0.76 eV) are significantly weaker than those in bcc Fe. The binding energy between the two He atoms in an interstitial-interstitial He pair (0.31 eV) is the same as that in bcc Fe, but the diffusion barrier of interstitial He (0.35 eV) is much larger than that in bcc Fe, suggesting that it is more difficult for the interstitial He atom to agglomerate in η-Fe2C than in bcc Fe. Thus, self-trapping of He in η-Fe2C is less powerful than that in bcc Fe. As a consequence, small and dense η-Fe2C particles in ferritic steels might serve as scattered trapping centers for He, slow down He bubble growth at the initial stage, and make the steel more swelling resistant.
Keywords:  He bubble      η-Fe2C      ferritic steels      first-principles  
Received:  02 June 2016      Revised:  07 August 2016      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the Research Key Project of Science and Technology of Education Bureau of Henan Province, China (Grant Nos. 14A140030, 15A140032, 15B150010, and 15A430037) and the Innovation Talents Program of Science and Technology of Institution of Higher Education of Henan Province, China (Grant No. 14HASTIT044).
Corresponding Authors:  Bing-Ling He     E-mail:  hbl626@126.com

Cite this article: 

Bing-Ling He(赫丙玲), Jin-Long Wang(王金龙), Zhi-Xue Tian(田之雪), Li-Juan Jiang(蒋利娟), Wei Song(宋薇), Bin Wang(王斌) First-principles study of He trapping in η-Fe2C 2016 Chin. Phys. B 25 116801

[1] Huang Q, Baluc N, Dai Y, Jitsukawa S, Kimura A, Konys J, Kurtz R J, Lindau R, Muroga T, Odette G R, Raj B, Stoller R E, Tan L, Tanigawa H, Tavassoli A F, Yamamoto T, Wan F and Wu Y 2013 J. Nucl. Mater. 442 S2
[2] Andreani R, Diegele E, Laesser R and van der Schaaf B 2004 J. Nucl. Mater. 329-333 (Part A) 20
[3] Wilson W, Bisson C and Baskes M 1981 Phys. Rev. B 24 5616
[4] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2005 Phys. Rev. Lett. 94 046403
[5] Jiang B, Wan F R and Geng W T 2010 Phys. Rev. B 81 134112
[6] Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329-333 (Part B) 1199
[7] Smith R W, Geng W T, Geller C B, Wu R and Freeman A J 2000 Scripta Mater. 43 957
[8] Tian Z X, Xiao W, Wan F R and Geng W T 2010 J. Nucl. Mater. 407 200
[9] Berg F, Heugten W, Caspers L, Veen A and De Hosson J T M 1977 Solid State Commun. 24 193
[10] Donnelly S E and Evans J H 1991 Fundamental Aspects of Inert Gases in Solids, (Plenum, New York) pp. 3-16
[11] Ishizaki T, Xu Q, Yoshiie T, Nagata S and Troev T 2002 J. Nucl. Mater. 307-311 (Part 2) 961
[12] Baluc N, Schäublin R, Spätig P and Victoria M 2004 Nucl. Fusion 44 56
[13] Ono K, Arakawa K and Hojou K J 2002 Nucl. Mater. 307-311 Part 21507
[14] Hao W and Geng W 2012 J. Phys.:Condens. Matter 24 095009
[15] Hao W and Geng W T 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 1428
[16] Hao W and Geng W T 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 280 22
[17] Ortiz C J, Caturla M J, Fu C C and Willaime F 2009 Phys. Rev. B 80 134109
[18] Christian J W 2002 The Theory of Transformations in Metals and Alloys (Part I+Ⅱ) (Access Online via Elsevier) pp. 718-785
[19] Hofer L J E and Cohn E M 1951 Nature 167 977
[20] Counts W A, Wolverton C and Gibala R 2010 Acta Mater. 58 4730
[21] Fang C M, van Huis M A and Zandbergen H W 2010 Scripta Mater. 63 418
[22] Ande C and Sluiter M F 2012 Metall. Mater. Trans. A 43 4436
[23] Faraoun H I, Zhang Y D, Esling C and Aourag H 2006 J. Appl. Phys. 99 093508
[24] Lv Z Q, Sun S H, Jiang P, Wang B Z and Fu W T 2008 Comput. Mater. Sci. 42 692
[25] Fang C M, van Huis M A, Jansen J and Zandbergen H W 2011 Phys. Rev. B 84 094102
[26] Bao L L, Huo C F, Deng C M and Li Y W 2009 J. Fuel Chem. Technol. 37 104
[27] Denisov E, Kompaniets T N, Murzinova M A and Yukhimchuk A A 2013 Tech. Phys. 58 814
[28] Coppola R, Dewhurst C D, Lindau R, May R P, Möslang A and Valli M 2004 Physica B:Condens. Matter 345 225
[29] Naraghi R, Selleby M and Ågren J 2014 Calphad 46 148
[30] Demina E V, Dubrovsky A V, Gribkov V A, Maslyaev S A, Pimenov V N, Sasinovskaya I P, Miklaszewski R and Scholz M 2009 International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, 2009, IAEA, Vienna
[31] Mazumdera B, Bannisterb M E, Meyerb F W, Millera M K, Parishc C M and Edmondson P D 2015 Nucl. Mater. Energy 1 8
[32] He B L, Ping D H and Geng W T 2014 J. Nucl. Mater. 444 368
[33] Hsiung L L, Fluss M J, Tumey S J, Choi B W, Serruys Y, Willaime F and Kimura A 2010 Phys. Rev. B 82 184103
[34] Erhart P 2012 J. Appl. Phys. 111 113502
[35] Yu K Y, Liu Y, Sun C, Wang H, Shao L, Fu E G and Zhang X 2012 J. Nucl. Mater. 425 140
[36] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Blöchl P E 1994 Phys. Rev. B 50 17953
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Hirotsu Y and Nagakura S 1972 Acta Metall. 20 645
[43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[44] Yan J X, Tian Z X, Xiao W and Geng W T 2011 J. Appl. Phys. 110 013508
[45] Schäublin R, Henry J and Dai Y 2008 Comptes Rendus Physique 9 389
[46] Cohn E M and Hofer L J E 1953 J. Chem. Phys. 21 354
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!