Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 110503    DOI: 10.1088/1674-1056/25/11/110503
GENERAL Prev   Next  

Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system

Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳)
Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  In order to improve the transform efficiency of bi-stable energy harvester (BEH), this paper proposes an advanced bi-stable energy harvester (ABEH), which is composed of two bi-stable beams coupling through their magnets. Theoretical analyzes and simulations for the ABEH are carried out. First, the mathematical model is established and its dynamical equations are derived. The formulas of magnetic force in two directions are given. The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells. To demonstrate the ABEH's advantage in harvesting energy, comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations. Our results reveal that the ABEH's inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations. Thus, it can generate a higher output power. The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance.
Keywords:  vibration energy harvesting      bi-stability      nonlinear dynamics      coherence resonance  
Received:  25 April 2016      Revised:  18 July 2016      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11172234) and the Scholarship from China Scholarship Council (Grant No. 201506290092).
Corresponding Authors:  Wei-Yang Qin     E-mail:  qinweiyang67@gmail.com

Cite this article: 

Hai-Tao Li(李海涛), Wei-Yang Qin(秦卫阳) Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system 2016 Chin. Phys. B 25 110503

[1] Priya S and Inman D J 2009 Energy Harvesting Technologies (New York:Springer) p. 135
[2] Erturk A and Inman D J 2011 Piezoelectric Energy Harvesting (New Jersey:John Wiley &$Sons) p. 234
[3] Anton S R and Sodano H A 2007 Smart Mater. Struct. 16 R1
[4] Tang L, Yang Y and Soh C K 2012 J. Intell. Mater. Syst. Struct. 23 1433
[5] Zhu D, Tudor M J and Beeby S P 2010 Meas. Sci. Technol. 21 022001
[6] Daqaq M F 2012 Nonlinear Dyn. 69 1063
[7] Jiang W A and Chen L Q 2010 Mech. Res. Commun. 53 85
[8] Gafforelli G, Corigliano A, Xu R and Kim S G. 2014 Appl. Phys. Lett. 105 203901
[9] Yang Z, Zhu Y and Zu J 2015 Smart Mater. Struct. 24 025028
[10] Cottone F, Vocca H and Gammaitoni L 2008 Phys. Rev. Lett. 102 080601
[11] Harne R L and Wang K W 2013 Smart Mater. Struct. 22 023001
[12] Masana R and Daqaq M F 2012 J. Appl. Phys. 111 044501
[13] Xu C D, Liang Z, Ren B, Di W N, Ruo H S, Wang D, Wang K L and Chen Z F 2013 Appl. Phys. Lett. 114 114507
[14] Zhao S and Erturk A 2013 Appl. Phys. Lett. 102 103902
[15] Jung J, Kim L P and Seok J 2015 Int. J. Mech. Sci. 92 206
[16] Tékam G T O, Kwuimy C A K and Woafo P 2015 Chaos 25 013112
[17] Kim P and Seok J 2014 J. Sound Vib. 333 5525
[18] Zhou S, Cao J, Inman D J, Liu S S, Wang W and Lin J 2015 Appl. Phys. Lett. 106 093901
[19] Stanton S C, McGehee C C and Mann B P 2010 Physica D 239 640
[20] Erturk A and Inman D J 2011 J. Sound Vib. 330 2339
[21] Moon F C and Holmes P J 1979 J. Sound Vib. 65 275
[22] Wang G Q and Liao W H 2015 Chin. Phys. Lett. 32 068503
[23] Zhou S, Cao J, Inman D J, Lin J Liu S S and Wang Z Z 2014 Appl. Energ. 133 33
[24] Fan K Q, Xu C H, Wang W D and Fang Y 2014 Chin. Phys. B 23 084501
[25] Litak G, Friswell M I and Adhikari S 2010 Appl. Phys. Lett. 96 214103
[26] Li H T, Qin W Y, Deng W Z and Tian R L 2016 EPJ Plus 131 60
[27] McInnes C R, Gorman D G and Cartmell M P 2008 J. Sound Vib. 318 655
[28] Hu G, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[29] Lan C B, Qin W Y and Li H T 2013 Acta Phys. Sin. 22 080503(in Chinese)
[30] Cao J, Zhou S, Wang W and Lin J 2015 Appl. Phys. Lett. 106 173903
[31] Hosseinloo A H and Turitsyn K 2015 Phys. Rev. Appl. 4 064009
[32] Friswell M I, Ali S F, Bilgen O, Adhikari S, Lees A W and Litak G 2012 J. Intel. Mat. Syst. Str. 23 1505
[33] Zhu Y, Zu J and Su W 2013 Smart Mater. Struct. 64 045007
[34] De Paula A S, Inman D J and Savi M A 2015 Mech. Syst. Signal. Pr. 54-55 405
[35] Zhao S and Erturk A 2013 Smart Mater. Struct. 22 015002
[1] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[2] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[3] Double coherence resonance of the FitzHugh–Nagumo neuron driven by harmonic velocity noise
Song Yan-Li (宋艳丽). Chin. Phys. B, 2014, 23(8): 080504.
[4] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[5] The propagation of shape changing soliton in a nonuniform nonlocal media
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi. Chin. Phys. B, 2013, 22(8): 084209.
[6] Propagation of electromagnetic soliton in anisotropic biquadratic ferromagnetic medium
L. Kavitha, M. Saravanan, D. Gopi. Chin. Phys. B, 2013, 22(3): 030512.
[7] Erratum to “Coherence resonance in globally coupled neuronal networks with different neuron numbers”
Ning Wei-Lian (宁维莲), Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Luo Xiao-Shu (罗晓曙), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾绍稳), Qiu Yi (邱怡), Wu Hui-Si (吴慧思). Chin. Phys. B, 2013, 22(1): 018702.
[8] Effects of non-Gaussian noise on a calcium oscillation system
Wang Bing (王兵), Sun Ya-Qin (孙雅琴), Tang Xu-Dong (唐旭东). Chin. Phys. B, 2013, 22(1): 010501.
[9] Nonlinear dynamics in wurtzite InN diodes under terahertz radiation
Feng Wei(冯伟) . Chin. Phys. B, 2012, 21(3): 037306.
[10] Coherence resonance in globally coupled neuronal networks with different neuron numbers
Ning Wei-Lian(宁维莲), Zhang Zheng-Zhen(张争珍), Zeng Shang-You(曾上游), Luo Xiao-Shu(罗晓曙), Hu Jin-Lin(胡锦霖), Zeng Shao-Wen(曾绍稳), Qiu Yi(邱怡), and Wu Hui-Si(吴慧思) . Chin. Phys. B, 2012, 21(2): 028702.
[11] Atom-loss-induced quantum optical bi-stability switch
Wu Bao-Jun (吴宝俊), Cui Fu-Cheng (崔傅成). Chin. Phys. B, 2012, 21(10): 103701.
[12] Directed segregation in compartmentalized bi-disperse granular gas
Sajjad Hussain Shah, Li Yin-Chang(李寅阊), Cui Fei-Fei(崔非非), Zhang Qi(张祺), and Hou Mei-Ying(厚美瑛) . Chin. Phys. B, 2012, 21(1): 014501.
[13] Spatial coherence resonance induced by coloured noise and parameter diversity in a neuronal network
Sun Xiao-Juan(孙晓娟) and Lu Qi-Shao(陆启韶). Chin. Phys. B, 2010, 19(4): 040504.
[14] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[15] Synchronization transition of limit-cycle system with homogeneous phase shifts
Zhang Ting-Xian(张廷宪) and Zheng Zhi-Gang(郑志刚). Chin. Phys. B, 2009, 18(10): 4187-4192.
No Suggested Reading articles found!