Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理)
Science and Technology on Surface Physics and Chemistry Laboratory, China Academy of Engineering Physics, Jiangyou 621908, China

Abstract Inspired by the recently proposed Legendre orthogonal polynomial representation for imaginary-time Green's functions G(τ ), we develop an alternate and superior representation for G(τ ) and implement it in the hybridization expansion continuous-time quantum Monte Carlo impurity solver. This representation is based on the kernel polynomial method, which introduces some integral kernel functions to filter the numerical fluctuations caused by the explicit truncations of polynomial expansion series and can improve the computational precision significantly. As an illustration of the new representation, we re-examine the imaginary-time Green's functions of the single-band Hubbard model in the framework of dynamical mean-field theory. The calculated results suggest that with carefully chosen integral kernel functions, whether the system is metallic or insulating, the Gibbs oscillations found in the previous Legendre orthogonal polynomial representation have been vastly suppressed and remarkable corrections to the measured Green's functions have been obtained.

Key words ：
kernel polynomial representation
imaginary-time Green'
s function
continuous-time quantum Monte Carlo impurity solver
dynamical mean-field theory
Received: 25 March 2016
PACS:
71.10.Fd
(Lattice fermion models (Hubbard model, etc.))
71.27.+a
(Strongly correlated electron systems; heavy fermions)

Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504340).

Corresponding Authors: Li Huang
E-mail: lihuang.dmft@gmail.com

[1]
Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[2]
Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[3]
Held K 2007 Adv. Phys. 56 829
[4]
Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027
[5]
Toschi A, Katanin A A and Held K 2007 Phys. Rev. B 75 045118
[6]
Rubtsov A N, Katsnelson M I and Lichtenstein A I 2008 Phys. Rev. B 77 033101
[7]
Emanuel G, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[8]
Werner P, Comanac A, and de'Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[9]
Werner P and Millis A J 2006 Phys. Rev. B 74 155107
[10]
Haule K 2007 Phys. Rev. B 75 155113
[11]
Gull E, Werner P, Parcollet O and Troyer M 2008 Europhys. Lett. 82 57003
[12]
Rubtsov A N, Savkin V V and Lichtenstein A I 2005 Phys. Rev. B 72 035122
[13]
Gull E, Werner P, Millis A J and Troyer M 2007 Phys. Rev. B 76 235123
[14]
Blumer N 2007 Phys. Rev. B 76 205120
[15]
Kune Å J 2011 Phys. Rev. B 83 085102
[16]
Boehnke L, Hafermann H, Ferrero M, Lechermann F and Parcollet O 2011 Phys. Rev. B 84 075145
[17]
Deng X Y, Ferrero M, Mravlje J, Aichhorn M and Georges A 2012 Phys. Rev. B 85 125137
[18]
Boehnke L and Lechermann F 2012 Phys. Rev. B 85 115128
[19]
Weiße A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275
[20]
Gradshteyn I S, Ryzhik I M, Jeffrey A and Zwillinger D 2000 Table of Integrals, Series, and Products, (6th Edn) (Amsterdam Academic)
[21]
Huang L, Wang Y L, Meng Z Y, Du L, Werner P and Dai X 2015 Computer Physics Communications 195 140
[22]
Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133

[1]
Chang-Sheng Li, Lei Ma, Jie-Rong Guo. Application of real space Kerker method in simulating gate-all-around nanowire transistors with realistic discrete dopants [J]. Chin. Phys. B, 2017, 26(9): 97301-097301.
[2]
A Ahmadi Fouladi. Quantum transport through a Z-shaped silicene nanoribbon [J]. Chin. Phys. B, 2017, 26(4): 47304-047304.
[3]
S Ramezani Akbarabadi, H Rahimpour Soleimani, M Bagheri Tagani, Z Golsanamlou. Impact of coupling geometry on thermoelectric properties of oligophenyl-base transistor [J]. Chin. Phys. B, 2017, 26(2): 27303-027303.
[4]
Mohsen Yarmohammadi. Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene [J]. Chin. Phys. B, 2017, 26(2): 26502-026502.
[5]
Jiyuan Bai, Li Li, Zelong He, Shujiang Ye, Shujun Zhao, Suihu Dang, Weimin Sun. Photon-assisted electronic and spin transport through two T-shaped three-quantum-dot molecules embedded in an Aharonov-Bohm interferometer [J]. Chin. Phys. B, 2017, 26(11): 117302-117302.
[6]
Hongqing Tian(田洪庆), Zengju Lian(连增菊). Semi-analytical method of calculating the electrostatic interaction of colloidal solutions [J]. Chin. Phys. B, 2017, 26(1): 17801-017801.
[7]
H Rezania, F Azizi. Charge susceptibilities of armchair graphene nanoribbon in the presence of magnetic field [J]. Chin. Phys. B, 2016, 25(9): 97303-097303.
[8]
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage [J]. Chin. Phys. B, 2016, 25(7): 76102-076102.
[9]
M Bati, S Sakiroglu, I Sokmen. Electron transport in electrically biased inverse parabolic double-barrier structure [J]. Chin. Phys. B, 2016, 25(5): 57307-057307.
[10]
Ju Lin, Xiao-Lei Li, Ning Wang. Rayleigh reciprocity relations: Applications [J]. Chin. Phys. B, 2016, 25(12): 124303-124303.
[11]
Mohsen Mahmoudi, Zahra Ahangari, Morteza Fathipour. Improved double-gate armchair silicene nanoribbon field-effect-transistor at large transport bandgap [J]. Chin. Phys. B, 2016, 25(1): 18501-018501.
[12]
Yu Jing-Xin, Hou Zhi-Wei, Liu Xiu-Ying. Stability of conductance oscillations in carbon atomic chains [J]. Chin. Phys. B, 2015, 24(6): 67307-067307.
[13]
Zhu Guo-Bao, Yang Hui-Min, Yang Sheng-Yuan. Thermal and thermoelectric response from Keldysh formalism with application to gapped Dirac fermions [J]. Chin. Phys. B, 2015, 24(4): 47401-047401.
[14]
Morteza Charmi. Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs [J]. Chin. Phys. B, 2015, 24(4): 47302-047302.
[15]
Liu Yu, Zhai Liang-Jun, Wang Huai-Yu. Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials [J]. Chin. Phys. B, 2015, 24(3): 37510-037510.