Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 106803    DOI: 10.1088/1674-1056/25/10/106803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial

Ran Jiang(蒋然)1, Zheng-Ran Wu(吴正冉)2, Zu-Yin Han(韩祖银)3, Hyung-Suk Jung2
1 Physical School, Shandong University, Jinan 250100, China;
2 Department of Materials Science and Engineering, Seoul National University, Seoul 151-747, Korea
Abstract  

Tunable modulations of terahertz waves in a graphene/ferroelectric-layer/silicon hybrid structure are demonstrated at low bias voltages. The modulation is due to the creation/elimination of an extra barrier in Si layer in response to the polarization in the ferroelectric Si:HfO2 layer. Considering the good compatibility of HfO2 with the Si-based semiconductor process, the highly tunable characteristics of the graphene metamaterial device under ferroelectric effect open up new avenues for graphene-based high performance integrated active photonic devices compatible with the silicon technology.

Keywords:  modulation      Hafnium oxide      graphene  
Received:  28 May 2016      Revised:  24 June 2016      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  84.40.Lj (Microwave integrated electronics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374182).

Corresponding Authors:  Ran Jiang     E-mail:  jiangran@sdu.edu.cn

Cite this article: 

Ran Jiang(蒋然), Zheng-Ran Wu(吴正冉), Zu-Yin Han(韩祖银), Hyung-Suk Jung HfO2-based ferroelectric modulator of terahertz waves with graphene metamaterial 2016 Chin. Phys. B 25 106803

[1] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S A, Grigorieva A and Firsov A 2004 Science 306 666
[2] Bonaccorso F, Sun Z, Hasan T and Ferrari A 2010 Nat. Photon. 4 611
[3] Shrekenhamer D, Rout S, Strikwerda A C, Bingham C, Averitt A D, Sonkusale S and Padilla W J 2011 Opt. Express 19 9968
[4] Hashimoto A, Suenaga K, Gloter A, Urita K and Iijima S 2004 Nature 430 870
[5] Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[6] Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K and Chen H T 2012 Nat. Commun. 3 1151
[7] Gu L L, Guo X G, Fu Z L, Wan W J, Zhang R, Tan Z Y and Cao J C 2015 Appl. Phys. Lett. 106 111107
[8] Böscke T, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903
[9] Xu X, Sultan S, Zhang C and Cao J 2010 Appl. Phys. Lett. 97 011907
[10] Svintsov D, Otsuji T, Mitin V, Shur M and Ryzhii V 2015 Appl. Phys. Lett. 106 113501
[11] Li Q, Tian Z, Zhang X, Xu N, Singh R, Gu J, Lv P, Luo L B, Zhang S and Han J 2015 Carbon 90 146
[12] Jiang R, Xie E Q and Wang Z F 2006 Appl. Phys. Lett. 89 142907
[13] Jiang R and Li Z 2008 Appl. Phys. Lett. 92 2919
[14] Dong H, Brennan B, Zhernokletov D, Kim J, Hinkle C and Wallace R 2013 Appl. Phys. Lett. 102 171602
[15] Jiang R, Du X, Han Z and Sun W 2015 Appl. Phys. Lett. 106 173509
[16] Jiang R, Wu Z, Du X, Han Z and Sun W 2015 Appl. Phys. Lett. 107 013502
[17] Jiang R, Wu Z, Du X, Han Z and Sun W 2015 Appl. Phys. Lett. 106 252902
[18] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I and Tutuc E 2009 Science 324 1312
[19] Lomenzo P D, Takmeel Q, Zhou C, Liu Y, Fancher C M, Jones J L, Moghaddam S and Nishida T 2014 Appl. Phys. Lett. 105 072906
[20] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu Land Xing H G 2012 Nat. Commun. 3 780
[21] Ren L, Zhang Q, Yao J, Sun Z, Kaneko R, Yan Z, Nanot S, Jin Z, Kawayama I and Tonouchi M 2012 Nano Lett. 12 3711
[22] Mathews S, Ramesh R, Venkatesan T and Benedetto J 1997 Science 276 238
[23] Weis P, Garcia-Pomar J L, Höh M, Reinhard B, Brodyanski A and Rahm M 2012 ACS Nano 6 9118
[24] Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G and W L Zhang 2015 Nat. Commun. 6 7082
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[6] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[14] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[15] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
No Suggested Reading articles found!