Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096802    DOI: 10.1088/1674-1056/25/9/096802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure

N A Izuani Che Rosid1, M T Ahmadi1,2, Razali Ismail1
1. Department of Electronics and Computer Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
2. Nanoelectronic Group, Physics Department, Faculty of Science, Urmia University, Urmia 57147, Iran
Abstract  The effect of tensile uniaxial strain on the non-parabolic electronic band structure of armchair graphene nanoribbon (AGNR) is investigated. In addition, the density of states and the carrier statistic based on the tight-binding Hamiltonian are modeled analytically. It is found that the property of AGNR in the non-parabolic band region is varied by the strain. The tunable energy band gap in AGNR upon strain at the minimum energy is described for each of n-AGNR families in the non-parabolic approximation. The behavior of AGNR in the presence of strain is attributed to the breakable AGNR electronic band structure, which varies the physical properties from its normality. The linear relation between the energy gap and the electrical properties is featured to further explain the characteristic of the deformed AGNR upon strain.
Keywords:  strain graphene nanoribbon      uniaxial strain      current-voltage characteristic  
Received:  14 December 2015      Revised:  15 April 2016      Accepted manuscript online: 
PACS:  68.65.Pq (Graphene films)  
  61.46.Np (Structure of nanotubes (hollow nanowires))  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
Fund: Project supported by the Ministry of Higher Education (MOHE), Malaysia under the Fundamental Research Grant Scheme (FRGS) (Grant No. Q.J130000.7823.4F477). We also thank the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment.
Corresponding Authors:  Razali Ismail     E-mail:  razali@fke.utm.my

Cite this article: 

N A Izuani Che Rosid, M T Ahmadi, Razali Ismail Strain effect on graphene nanoribbon carrier statistic in the presence of non-parabolic band structure 2016 Chin. Phys. B 25 096802

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
[3] Obeng Y and Srinivasan P 2011 Interface-Electrochemical Society 20 47
[4] Tang C, Wei X L, Tan X, Peng X Y, Sun L Z and Zhong J X 2012 Chin. Phys. B 21 066803
[5] Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748
[6] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803
[7] Deng S X and Liang S D 2012 Chin. Phys. B 21 047306
[8] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[9] Wang Z F, Li Q, Zheng H, Ren H, Su H, Shi Q W and Chen J 2007 Phys. Rev. B 75 113406
[10] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[11] Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 Chin. Phys. B 19 037204
[12] Ungersboeck E, Dhar S, Karlowatz G, Sverdlov V, Kosina H and Selberherr S 2007 IEEE Transactions on Electron Devices 54 2183
[13] Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874
[14] Lu Y and Guo J 2010 Nano Research 3 189
[15] Mei H, Yong Z and Hong-Bo Z 2010 Chin. Phys. Lett. 27 037302
[16] Johari Z and Ismail R 2013 Nanoscale Research Letters 8 479
[17] Levy N, Burke S A, Meaker K L, Panlasiqui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544
[18] Guinea F 2012 Solid State Commun. 152 1437
[19] Ni G X, Yang H Z, Ji W, Baeck S J, Toh C T, Ahn J H, Pereira V M and Özyilmaz B 2014 Adv. Mater. 26 1081
[20] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[21] Xu C, Li H and Banerjee K 2009 IEEE Transactions on Electron De-vices 56 1567
[22] Tsuchiya H, Ando H, Sawamoto S, Maegawa T, Hara T, Yao H and Ogawa M 2010 IEEE Transactions on Electron Devices 57 406
[23] Sako R, Hosokawa H and Tsuchiya H 2011 IEEE Electron Device Let-ters 32 6
[24] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[1] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[2] Vortex pinning and rectification effect in a nanostructured superconducting film with a square array of antidot triplets
An He(何安), Cun Xue(薛存), Youhe Zhou(周又和). Chin. Phys. B, 2018, 27(5): 057402.
[3] Uniaxial strain-modulated electronic structures of CdX (X=S, Se, Te) from first-principles calculations: A comparison between bulk and nanowires
Linlin Xiang(相琳琳), Shenyuan Yang(杨身园). Chin. Phys. B, 2017, 26(8): 087103.
[4] Dynamics of vortex-antivortex pair in a superconducting thin strip with narrow slits
An He(何安), Cun Xue(薛存), You-He Zhou(周又和). Chin. Phys. B, 2017, 26(4): 047403.
[5] Phonon-dependent transport through a serially coupled double quantum dot system
M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(5): 057302.
[6] Spin-dependent transport induced by magnetization in zigzag graphene nanoribbons coupled to one-dimensional leads
Zhao Hua(赵华), Zhang Xiao-Wei(张小伟), Cai Tuo(蔡托) Sang Tian(桑田), Liu Xiao-Chun(刘晓春), and Liu Fang(刘芳) . Chin. Phys. B, 2012, 21(1): 017305.
[7] I-V-T studies on Ni-silicide/n-Si(100) contacts formed by Ti-Ni-Si solid state reaction
Zhu Shi-Yang (竺士炀), Ru Guo-Ping (茹国平), Zhou Jia (周嘉), Huang Yi-Ping (黄宜平). Chin. Phys. B, 2005, 14(8): 1639-1643.
[8] Nonlinear current-voltage characteristics of sintered tungsten-vanadium oxide
Liu Zu-Li (刘祖黎), Yang Lin-Feng (杨林峰), Wang Yu (王豫), Yao Kai-Lun (姚凯伦), Wang Chuan-Cong (王传聪). Chin. Phys. B, 2004, 13(4): 522-528.
No Suggested Reading articles found!