Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 096108    DOI: 10.1088/1674-1056/25/9/096108
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations

Feng-chun Pan(潘凤春), Zhi-peng Chen(陈治鹏), Xue-ling Lin(林雪玲), Fu Zheng(郑富), Xu-ming Wang(王旭明), Huan-ming Chen(陈焕铭)
School of Physics and Electric Information Engineering, Ningxia University, Yinchuan 750021, China
Abstract  The electronic structures and magnetic properties of the Cu and N codoped 3C-SiC system have been investigated by the first-principles calculation. The results show that the Cu doped SiC system prefers the anti-ferromagnetic (AFM) state. Compared to the Cu doped system, the ionicities of C-Cu and C-Si in Cu and N codoped SiC are respectively enhanced and weakened. Especially, the Cu and N codoped SiC systems favor the ferromagnetic (FM) coupling. The FM interactions can be explained by virtual hopping. However, higher N concentration will weaken the ferromagnetism. In order to keep the FM interaction, the N concentration should be restricted within 9.3% according to our analysis.
Keywords:  ferromagnetism      3C-SiC      codoped system  
Received:  22 March 2016      Revised:  12 May 2016      Accepted manuscript online: 
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the Higher School Science Research Outstanding Youth Fund Project of Ningxia, China (Grant No. NGY2015049).
Corresponding Authors:  Xue-ling Lin     E-mail:  nxulxl@163.com

Cite this article: 

Feng-chun Pan(潘凤春), Zhi-peng Chen(陈治鹏), Xue-ling Lin(林雪玲), Fu Zheng(郑富), Xu-ming Wang(王旭明), Huan-ming Chen(陈焕铭) Electronic structure and magnetic properties of (Cu, N)-codoped 3C-SiC studied by first-principles calculations 2016 Chin. Phys. B 25 096108

[1] Dietl T, Ohno H, Matsukura F and Cubert D 2000 Science 287 1019
[2] Ohno H 1998 Science 281 951
[3] Al Azri M, Elzain M, Bouziane K, Chérif S, Declémy A and Thomé L 2013 J. Appl. Phys. 113 17C305
[4] Elzain M, Al-Harthi S, Gismelseed A, Al-Rawas A, Yousif A, Widatallah H and Al-Barwani M 2014 Hyperfine Interact 226 281
[5] Syväjärvi M, Stanciu V, Izadifard M, Chen W M, Buyanova I A, Svedlindh P and Yakimova R 2004 Mater. Sci. Forum 457-460 747
[6] Theodoropoulou N, Hebard A F, Chu S, Overberg M E, Abernathy C R, Pearton S J, Wilson R G, Zavada J M and Park Y D 2002 J. Vac. Sci. Technol. A 20 579
[7] Stromberg F, Keune W, Chen X, Bedanta S, Reuther H and Mücklich A 2006 J. Phys.: Condens. Matter 18 9881
[8] Lin X L and Pan F C 2014 J. Supercond. Nov. Magn. 27 1513
[9] Liu L Z, Wu X L, Liu X X, Xiong S J and Chu P K 2014 J. Phys. Chem. C 118 25429
[10] Wang Y T, Chen X L, Li L, Shalimov A, Tong W, Prucnal S, Munnik F, Yang Z R, Skorupa W, Helm M and Zhou S Q 2014 J. Appl. Phys. 115 17C104
[11] Zhou R W, Liu X C, Wang H J, Chen W B, Li F, Zhou S Y and Shi E W 2015 AIP Advances 5 047146
[12] He X J, Tan J, Zhang B L, Zhao M W, Xia H H, Liu X D, He Z T, Yang X M and Zhou X T 2013 Appl. Phys. Lett. 103 162409
[13] Wang Y, Li L, Prucnal S, Chen X, Tong W, Yang Z, Munnik F, Potzger K, Skorupa W, Gemming S, Helm M and Zhou S 2014 Phys. Rev. B 89 014417
[14] Wang Y, Liu Y, Wendler E, Hübner R, Anwand W, Wang G, Chen X, Tong W, Yang Z, Munnik F, Bukalis G, Chen X, Gemming S, Helm M and Zhou S 2015 Phys. Rev. B 92 174409
[15] Pan F, Yang B, Lin X, Li H and Chen H 2015 J. Supercond. Nov. Magn. 28 1617
[16] Lin X, Yan S, Zhao M, Hu S, Yao X, Han C, Chen Y, Liu G, Dai Y and Mei L 2010 J. Appl. Phys. 107 033903
[17] Lee J, Choi I, Shin S, Lee S, Lee J, Whang C, Lee S, Lee K, Baek J, Chae K and Song J 2007 Appl. Phys. Lett. 90 032504
[18] Zhou L, Li H, Zhang L, Cheng J, Zhao H, Chu W, Yang J, Luo Y and Wu Z 2011 J. Phys. Chem. C 115 253
[19] Zhao C, Zhen C, Li Y, Ma L, Pan C and Hou D 2012 Solid State Commun. 152 752
[20] Zheng H, Yan Y, Lv Z, Yang S, Li X, Liu J, Ye B, Peng C, Diao C and Zhang W 2013 Appl. Phys. Lett. 102 142409
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[23] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[24] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[25] Miao M S and Lambrecht W 2003 Phys. Rev. B 68 125204
[26] Miao M S and Lambrecht W 2006 Phys. Rev. B 74 235218
[27] Zhao M, Pan F and Mei L 2010 Appl. Phys. Lett. 96 012508
[28] Lin X, Yan S, Zhao M, Hu S, Han C, Chen Y, Liu G, Dai Y and Mei L 2011 Phys. Lett. A 375 638
[29] Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
[30] Lin X, Pan F and Chen H 2015 J. Supercond. Nov. Magn. 28 3065
[31] Li X, Dai Y, Ma Y and Huang B 2014 Phys. Chem. Chem. Phys. 16 13383
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[5] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[6] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[7] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] Crystallographic and magnetic properties of van der Waals layered FePS3 crystal
Qi-Yun Xie(解其云), Min Wu(吴敏), Li-Min Chen(陈丽敏), Gang Bai(白刚), Wen-Qin Zou(邹文琴), Wei Wang(王伟), Liang He(何亮). Chin. Phys. B, 2019, 28(5): 056102.
[13] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Magnetism induced by Mn atom doping in SnO monolayer
Ruilin Han(韩瑞林), Yu Yan(闫羽). Chin. Phys. B, 2018, 27(11): 117505.
No Suggested Reading articles found!