Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 087307    DOI: 10.1088/1674-1056/25/8/087307
RAPID COMMUNICATION Prev   Next  

AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films

Yunbo Ou(欧云波)1, Yang Feng(冯洋)2, Xiao Feng(冯硝)1,2, Zhenqi Hao(郝镇齐)2, Liguo Zhang(张立果)2, Chang Liu(刘畅)2, Yayu Wang(王亚愚)2, Ke He(何珂)2, Xucun Ma(马旭村)2, Qikun Xue(薛其坤)2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  

We have realized robust quantum anomalous Hall samples by protecting Cr-doped (Bi, Sb)2Te3 topological insulator films with a combination of LiF and AlOx capping layers. The AlOx/LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped (Bi, Sb)2Te3 films and effectively prevent them from degradation induced by ambient conditions. The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system.

Keywords:  quantum anomalous Hall effect      AlOx      LiF      protection layer  
Received:  03 March 2016      Revised:  26 March 2016      Accepted manuscript online: 
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11325421).

Corresponding Authors:  Yayu Wang, Ke He     E-mail:  yayuwang@tsinghua.edu.cn;kehe@tsinghua.edu.cn

Cite this article: 

Yunbo Ou(欧云波), Yang Feng(冯洋), Xiao Feng(冯硝), Zhenqi Hao(郝镇齐), Liguo Zhang(张立果), Chang Liu(刘畅), Yayu Wang(王亚愚), Ke He(何珂), Xucun Ma(马旭村), Qikun Xue(薛其坤) AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films 2016 Chin. Phys. B 25 087307

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 3
[2] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[3] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[4] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[5] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[6] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[7] He K, Wang Y and Xue Q K 2013 Natl. Sci. Rev. 1 38
[8] Wang J, Lian B, Qi X L and Zhang S C 2015 Phys. Rev. B 92 064520
[9] Morimoto T, Furusaki A and Nagaosa N 2015 Phys. Rev. B 92 085113
[10] Wang J, Lian B, Qi X L and Zhang S C 2015 Phys. Rev. B 92 081107
[11] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[12] Qi X L, Li R D, Zang J D and Zhang S C 2009 Science 323 1184
[13] Beenakker C W J 2013 Ann. Rev. Condens. Matter Phys. 4 113
[14] Alicea J 2012 Rep. Prog. Phys. 75 076501
[15] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[16] Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera J S 2015 Nat. Mater. 14 473
[17] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401
[18] He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[19] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[20] Park J, Soh Y A, Aeppli G, Feng X, Ou Y B, He K and Xue Q K 2015 Sci. Rep. 5 11595
[21] Wang N P, Rohlfing M, Kruger P and Pollmann J 2003 Phys. Rev. B 67
[22] Yang W M, Lin C J, Liao J and Li Y Q 2013 Chin. Phys. B 22 097202
[23] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lü L 2010 Phys. Rev. Lett. 105 176602
[24] Stubblef C B and Bach R O 1972 J. Chem. Eng. Data 17 491
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[5] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[6] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[7] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[8] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2) gauge field on bilayer honeycomb lattice
Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(5): 057302.
[11] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[12] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[13] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
No Suggested Reading articles found!