Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088402    DOI: 10.1088/1674-1056/25/8/088402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening

Wei Liu(刘玮)1, Chao Li(李超)1, Zhao-Yang Sun(孙兆阳)1, Yu Zhao(赵宇)2, Shi-You Wu(吴世有)1, Guang-You Fang(方广有)1
1 Key Laboratory of Electromagnetic Radiation and Sensing Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
2 Electric Power Research Institute of State Grid Beijing Electric Power Company, Beijing 100161, China
Abstract  

In the terahertz (THz) band, the inherent shake of the human body may strongly impair the image quality of a beam scanning single frequency holography system for personnel screening. To realize accurate shake compensation in imaging processing, it is quite necessary to develop a high-precision measure system. However, in many cases, different parts of a human body may shake to different extents, resulting in greatly increasing the difficulty in conducting a reasonable measurement of body shake errors for image reconstruction. In this paper, a body shake error compensation algorithm based on the raw data is proposed. To analyze the effect of the body shake on the raw data, a model of echoed signal is rebuilt with considering both the beam scanning mode and the body shake. According to the rebuilt signal model, we derive the body shake error estimated method to compensate for the phase error. Simulation on the reconstruction of point targets with shake errors and proof-of-principle experiments on the human body in the 0.2-THz band are both performed to confirm the effectiveness of the body shake compensation algorithm proposed.

Keywords:  body shake      compensation      THz imaging      single frequency holography      beam scanning  
Received:  08 January 2016      Revised:  31 March 2016      Accepted manuscript online: 
PACS:  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: 

Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123).

Corresponding Authors:  Chao Li     E-mail:  cli@mail.ie.ac.cn

Cite this article: 

Wei Liu(刘玮), Chao Li(李超), Zhao-Yang Sun(孙兆阳), Yu Zhao(赵宇), Shi-You Wu(吴世有), Guang-You Fang(方广有) Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening 2016 Chin. Phys. B 25 088402

[1] Zandonella C 2003 Nature 424 721
[2] Liu W, Li C, Sun Z Y, Zhang Q Y and Fang G Y 2015 Opt. Lett. 40 3384
[3] Feng W, Zhang R and Cao J C 2013 Physics 42 846 (in Chinese)
[4] Cooper K B, Dengler R J, Llombart N, Bryllert T, Chattopadhyay G, Schlecht E, Gill J, Lee C, Skalare A, Mehdi I and Siegel P H 2008 IEEE Trans. Anten. Propag. 56 2771
[5] Song Q, Zhao Y J, Redo-Sanchez A, Zhang C L and Liu X H 2009 Opt. Commun. 282 2019
[6] Gao X, Li C and Fang G Y 2014 Chin. Phys. B 23 028401
[7] Gao X, Li C and Fang G Y 2013 Chin. Phys. Lett. 30 068401
[8] Gao X, Li C, Gu S M and Fang G Y 2011 J. Infrared Millim. Terahertz Waves 32 1314
[9] Ahmed S S, Schiessl A and Schmidt L P 2011 IEEE Trans. Microwave Theory Technol. 59 3567
[10] Cooper K B, Dengler R J, Llombart N N, Thomas B, Chattopadhyay G and Siegel P H 2011 IEEE Trans. Terahertz Technol. 1 169
[11] Sheen D M, Hall T E, Severtsen R H, McMakin D L, Hatchell B K and Valdez L J 2010 Proc. SPIE 7670 767008
[12] Antonio G, Borja G, Oscar R, Grajal J, Badolato A, Beatriz M, Pilar G S and Besada J L 2014 IEEE Trans. Anten. Propag. 62 4997
[13] Sheen D M, Mcmakin D and Hall T 2010 Appl. Opt. 49 E83
[14] Gao X, Li C, Gu S M and Fang G Y 2012 IEEE Anten. Wireless Propag. Lett. 11 787
[15] Gu S M, Li C, Gao X, Sun Z Y and Fang G Y 2013 IEEE Trans. Geosci. Remote Sensing 51 2241
[16] Liu W, Li C, Sun Z Y, Zhang Q Y and Fang G Y 2015 IEEE Trans. Terahertz Technol. 5 967
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[4] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[5] Real-time frequency transfer system over ground-to-satellite link based on carrier-phase compensation at 10-16 level
Hui-Jian Liang(梁慧剑), Shi-Guang Wang(王时光), Yu Bai(白钰), Si-Chen Sun(孙思忱), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(8): 080601.
[6] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[7] High gain fiber-solid hybrid double-passing end-pumped Nd: YVO4 picosecond amplifier with high beam quality
Xueyan Dong(董雪岩), Pingxue Li(李平雪), Shun Li(李舜), Dongsheng Wang(王东生). Chin. Phys. B, 2020, 29(5): 054207.
[8] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[9] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[10] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[11] Polymer/silica hybrid waveguide Y-branch power splitter with loss compensation based on NaYF4: Er3+, Yb3+ nanocrystals
Yue-Wu Fu(符越吾), Tong-He Sun(孙潼鹤), Mei-Ling Zhang(张美玲), Xu-Cheng Zhang(张绪成), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2019, 28(10): 104206.
[12] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
[13] Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft x-ray absorption spectroscopy
Xing-Hui Long(龙兴辉), Yan-Ru Wu(吴颜如), Nian Zhang(张念), Peng-Fei Yu(于鹏飞), Xue-Fei Feng(冯雪飞), Shun Zheng(郑顺), Jia-Min Fu(傅佳敏), Xiao-Song Liu(刘啸嵩), Na Liu(柳娜), Meng Wang(王梦), Lei-Min Xu(徐磊敏), Jin-Ming Chen(陈锦明), Jenn-Min Lee(李振民). Chin. Phys. B, 2018, 27(10): 107802.
[14] Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement
Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2017, 26(9): 094301.
[15] Effect of gravity gradient in weak equivalence principle test
Jia-Hao Xu(徐家豪), Cheng-Gang Shao(邵成刚), Jie Luo(罗杰), Qi Liu(刘祺), Lin Zhu(邾琳), Hui-Hui Zhao(赵慧慧). Chin. Phys. B, 2017, 26(8): 080401.
No Suggested Reading articles found!