|
|
Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures |
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor (GTCE-HEMT) with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 mS/mm, and subthreshold slope of 85 mV/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage (VB) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode (D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits.
|
Received: 26 January 2016
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund:Project supported by the National Science and Technology Major Project, China (Grant No. 2013ZX02308-002) and the National Natural Science Foundation of China (Grant Nos. 11435010, 61474086, and 61404099). |
Corresponding Authors: Jin-Cheng Zhang
|
E-mail: jchzhang@xidian.edu.cn
|
|
|
|
[1] |
Khan M A, Kuznia J N, Bhattarai A R and Olson D T 1993 Appl. Phys. Lett. 62 1786
|
[2] |
Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, DenBaars S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
|
[3] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[4] |
Hikita M, Yanagihara M, Nakazawa K, Ueno H, Hirose Y, Ueda T, Uemoto Y and Tanaka T 2005 IEEE Trans. Electron Dev. 52 1963
|
[5] |
Cao X A, Cho H, Pearton S J, Dang G T, Zhang A P, Ren F, Shul R J, Zhang L, Hickman R and Van Hove J M 1999 Appl. Phys. Lett. 75 232
|
[6] |
Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
|
[7] |
Feng Z H, Zhou R, Xie S Y, Yin J Y, Fang J X, Liu B, Zhou W, Chen K J and Cai S J 2010 IEEE Electron Dev. Lett. 31 1386
|
[8] |
Khan M A, Chen Q, Sun C J, Yang J W, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
|
[9] |
Mi M H, Zhang K, Chen X, Zhao S L, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 077304
|
[10] |
Kuroda M, Ishida H, Ueda T and Tanaka T 2007 J. Appl. Phys. 102 093703
|
[11] |
Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Dev. 57 368
|
[12] |
Fujiwara T, Keller S, Speck J S, DenBaars S P and Mishra U K 2012 Phys. Status Solidi C 9 891
|
[13] |
Fujiwara T, Keller S, Higashiwaki M, Speck J S, DenBaars S P and Mishra U K 2009 Appl. Phys. Express 2 061003
|
[14] |
Fujiwara T, Keller S, Speck J S, DenBaars S P and Mishra U K 2010 Appl. Phys. Express 3 101002
|
[15] |
Fujiwara T, Yeluri R, Denninghoff D, Liu J, Keller S, Speck J S, DenBaars S P and Mishra U K 2011 Appl. Phys. Express 4 096501.
|
[16] |
Wen Y H, He Z Y, Li J L, Luo R H, Xiang P, Deng Q Y, Xu G N, Shen Z, Wu Z S, Zhang B J, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 072108
|
[17] |
Lee J H, Jeong J H and Lee J H 2012 IEEE Electron Dev. Lett. 33 1429
|
[18] |
Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J and Shen B 2013 IEEE Electron Dev. Lett. 34 1370
|
[19] |
Okada M, Saitoh Y, Yokoyama M, Nakata K, Yaegassi S, Katayama K, Ueno M, Kiyama M, Katsuyama T and Nakamura T 2010 Appl. Phys. Express 3 054201
|
[20] |
Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G F, Prunty T, Bour D and Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939
|
[21] |
Oka T, Ueno Y, Ina T and Hasegawa K 2014 Appl. Phys. Express 7 021002
|
[22] |
Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307
|
[23] |
Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
|
[24] |
Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Trans. Electron Dev. 48 535
|
[25] |
Fang Z Q, Claflin B, Look D C, Green D S and Vetury R 2010 J. Appl. Phys. 108 063706
|
[26] |
ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2012
|
[27] |
Takashima S, Li Z D and Chow T P 2013 IEEE Trans. Electron Dev. 60 3025
|
[28] |
Kim D S, Im K S, Kim K W, Kang H S, Kim D K, Chang S J, Bae Y, Hahm S H, Cristoloveanu S and Lee J H 2013 Solid-State Electron. 90 79
|
[29] |
Koblmüller G, Chu R M, Raman A, Mishra U K and Speck J S 2010 J. Appl. Phys. 107 043527
|
[30] |
Yao Y, He Z Y, Yang F, Shen Z, Zhang J C, Ni Y Q, Li J, Wang S, Zhou G L, Zhong J, Wu Z S, Zhang B J, Ao J P and Liu Y 2014 Appl. Phys. Express 7 016502
|
[31] |
Yu E T and Manasreh M O 2002 III-V Nitride Semiconductors Applications and Devices, Vol. 16 (New York:Taylor and Francis Books) pp. 163-168
|
[32] |
F Bernardini, V Fiorentini and D Vanderbilt 1997 Phys. Rev. B 56 R10024
|
[33] |
Yu E T, Sullivan G J, Asbeck P M, Wang C D, Qiao D and Lau S S 1997 Appl. Phys. Lett. 71 2794
|
[34] |
Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
|
[35] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, W Rieger and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[36] |
Keller S, Parish G, Fini P T, Heikman S, Chen C H, Zhang N, DenBaars S P, Mishra U K and Wu Y F 1999 J. Appl. Phys. 86 5850
|
[37] |
Chang C Y, Wang Y L, Gila B P, Gerger A P, Pearton S J, Lo C F, Ren F, Sun Q, Zhang Y and Han J 2009 Appl. Phys. Lett. 95 082110
|
[38] |
Kuraguchi M, Takada Y, Suzuki T, Hirose M, Tsuda K, Saito W, Saito Y and Omura I 2007 Phys. Stat. Sol. A 204 2010
|
[39] |
Jessen G H, Fitch R C, Gillespie J K, Via G, Crespo A, Langley D, Denninghoff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron Dev. 54 2589
|
[40] |
Chow T P and Ghezzo M 1996 "SiC power devices", in III-Nitride, SiC, and Diamond Materials for Electronic Devices, eds. Gaskill D K, Brandt C D and Nemanich R J, Material Research Society Symposium Proceedings, 1996, Pittsburgh, PA, p. 69
|
[1] |
Jianfei Li, Yuanjie Lv, Changfu Li, Ziwu Ji, Zhiyong Pang, Xiangang Xu, Mingsheng Xu. Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chin. Phys. B, 2017, 26(9): 98504-098504. |
[2] |
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor[J]. Chin. Phys. B, 2017, 26(1): 17304-017304. |
[3] |
Wei Mao, Ju-Sheng Fan, Ming Du, Jin-Feng Zhang, Xue-Feng Zheng, Chong Wang, Xiao-Hua Ma, Jin-Cheng Zhang, Yue Hao. Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate[J]. Chin. Phys. B, 2016, 25(12): 127305-127305. |
[4] |
Wei Mao, Wei-Bo She, Cui Yang, Jin-Feng Zhang, Xue-Feng Zheng, Chong Wang, Yue Hao. Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates[J]. Chin. Phys. B, 2016, 25(1): 17303-017303. |
[5] |
Zhou Xing-Ye, Feng Zhi-Hong, Wang Yuan-Gang, Gu Guo-Dong, Song Xu-Bo, Cai Shu-Jun. Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor[J]. Chin. Phys. B, 2015, 24(4): 48503-048503. |
[6] |
Zheng Xue-Feng, Fan Shuang, Chen Yong-He, Kang Di, Zhang Jian-Kun, Wang Chong, Mo Jiang-Hui, Li Liang, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue. Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation[J]. Chin. Phys. B, 2015, 24(2): 27302-027302. |
[7] |
Ma Xiao-Hua, Zhang Ya-Man, Wang Xin-Hua, Yuan Ting-Ting, Pang Lei, Chen Wei-Wei, Liu Xin-Yu. Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values[J]. Chin. Phys. B, 2015, 24(2): 27101-027101. |
[8] |
Zhang Sheng, Wei Ke, Yu Le, Liu Guo-Guo, Huang Sen, Wang Xin-Hua, Pang Lei, Zheng Ying-Kui, Li Yan-Kui, Ma Xiao-Hua, Sun Bing, Liu Xin-Yu. AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation[J]. Chin. Phys. B, 2015, 24(11): 117307-117307. |
[9] |
Zheng Jia-Xin, Ma Xiao-Hua, Lu Yang, Zhao Bo-Chao, Zhang Hong-He, Zhang Meng, Cao Meng-Yi, Hao Yue. A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT[J]. Chin. Phys. B, 2015, 24(10): 107305-107305. |
[10] |
Wu Mei, Zheng Da-Yong, Wang Yuan, Chen Wei-Wei, Zhang Kai, Ma Xiao-Hua, Zhang Jin-Cheng, Hao Yue. Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range[J]. Chin. Phys. B, 2014, 23(9): 97307-097307. |
[11] |
Cao Meng-Yi, Lu Yang, Wei Jia-Xing, Chen Yong-He, Li Wei-Jun, Zheng Jia-Xin, Ma Xiao-Hua, Hao Yue. An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chin. Phys. B, 2014, 23(8): 87201-087201. |
[12] |
Gu Wen-Ping, Zhang Lin, Li Qing-Hua, Qiu Yan-Zhang, Hao Yue, Quan Si, Liu Pan-Zhi. Effect of neutron irradiation on the electrical properties of AlGaN/GaN high electron mobility transistors[J]. Acta Phys. Sin, 2014, 63(4): 47202-047202. |
[13] |
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Improvement in a-plane GaN crystalline quality using wet etching method[J]. Chin. Phys. B, 2014, 23(4): 47804-047804. |
[14] |
Li Ming, Wang Yong, Wong Kai-Ming, Lau Kei-May. Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition[J]. Chin. Phys. B, 2014, 23(3): 38403-038403. |
[15] |
Pongthavornkamol Tiwat, Pang Lei, Yuan Ting-Ting, Liu Xin-Yu. Improved power simulation of AlGaN/GaN HEMT at class-AB operation via an RF drain–source current correction method[J]. Chin. Phys. B, 2014, 23(12): 127304-127304. |
|
|
|
|