Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 083102    DOI: 10.1088/1674-1056/25/8/083102
REVIEW Prev   Next  

Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model

Yang Gao(高阳)1,2, Zhigang Wang(王志刚)1,2
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China
Abstract  5f-elements encaged in a gold superatomic cluster are capable of giving rise to unique optical properties due to their hyperactive valence electrons and great radial components of 5f/6d orbitals. Herein, we review our first-principles studies on electronic structures and spectroscopic properties of a series of actinide-embedded gold superatomic clusters with different dimensions. The three-dimensional (3D) and two-dimensional (2D) superatom clusters possess the 18-electron configuration of 1S21P61D10 and 10-electron configuration of 1S21P41D4, respectively. Importantly, their electronic absorption spectra can also be effectively explained by the superatom orbitals. Specifically, the charge transfer (CT) transitions involved in surface-enhance Raman spectroscopy (SERS) spectra for 3D and 2D structures are both from the filled 1D orbitals, providing the enhancement factors of the order of ~104 at 488 nm and ~105 at 456 nm, respectively. This work implies that the superatomic orbital transitions involved in 5f-elements can not only lead to a remarkable spectroscopic performance, but also a new direction for optical design in the future.
Keywords:  5f-electrons      ds-electrons      superatom      first-principles  
Received:  20 January 2016      Revised:  09 April 2016      Accepted manuscript online: 
PACS:  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  32.30.-r (Atomic spectra?)  
  36.40.-c (Atomic and molecular clusters)  
  71.15.Rf (Relativistic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374004), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150519021JH), the Fok Ying Tung Education Foundation, China (Grant No. 142001), and the Support from the High Performance Computing Center (HPCC) of Jilin University, China.
Corresponding Authors:  Zhigang Wang     E-mail:  wangzg@jlu.edu.cn,wangzg1978@hotmail.com

Cite this article: 

Yang Gao(高阳), Zhigang Wang(王志刚) Effects of 5f-elements on electronic structures and spectroscopic properties of gold superatom model 2016 Chin. Phys. B 25 083102

[1] Pyykkö P 2008 Chem. Soc. Rev. 37 1967
[2] Boisselier E and Astruc D 2009 Chem. Soc. Rev. 38 1759
[3] Häkkinen H 2008 Chem. Soc. Rev. 37 1847
[4] Giljohann D A, Seferos D S, Daniel W L, Massich M D, Patel P C and Mirkin C A 2010 Angew. Chem. Int. Ed. 49 3280
[5] Katz J, Seaborg G and Morss L 1986 The chemistry of the actinide elements, Volume II (Now York:Methuen, Inc.)
[6] Krupa J 1995 J. Alloys Compd. 225 1
[7] Gao Y, Chen L, Dai X, Song R X, Wang B and Wang Z G 2015 Rsc. Adv. 5 32198
[8] Gao Y, Wang B, Lei Y Y, Teo B K and Wang Z G 2016 Nano Res. 9 622
[9] Da Re R E, Jantunen K C, Golden J T, Kiplinger J L and Morris D E 2005 J. Am. Chem. Soc. 127 682
[10] Ravindran T R and Arora A K 2011 J. Raman Spectrosc. 42 885
[11] Jha A 2014 Rare Earth Materials:Properties and Applications (Florida:CRC Press)
[12] Henriksen G, Bruland O S and Larsen R H 2004 Anticancer Res. 24 101
[13] Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M and Cohen M L 1984 Phys. Rev. Lett. 52 2141
[14] Jena P 2013 J. Phys. Chem. Lett. 4 1432
[15] Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P and Pederson M R 2009 Nat. Chem. 1 310
[16] Teo B K and Zhang H 1995 Coord. Chem. Rev. 143 611
[17] Janssens E, Neukermans S and Lievens P 2004 Curr. Opin. Solid State Mater. Sci. 8 185
[18] Khanna S N and Jena P 1992 Phys. Rev. Lett. 71 208
[19] Pyykkö P and Runeberg N 2002 Angew. Chem. Int. Ed. 114 2278
[20] Li X, Kiran B, Li J, Zhai H J and Wang L S 2002 Angew. Chem. Int. Ed. 41 4786
[21] Gao Y, Bulusu S and Zeng X C 2006 Chem. Phys. Chem. 7 2275
[22] Wang L M, Bulusu S, Zhai H J, Zeng X C and Wang L S 2007 Angew. Chem. Int. Ed. 46 2915
[23] Gao Y, Bulusu S and Zeng X C 2005 J. Am. Chem. Soc. 127 15680
[24] Zhang C H, Cui H and Shen J 2012 Chin. Phys. B 21 103102
[25] Xu H G, Wu M M, Zhang Z G, Sun Q and Zheng W J 2011 Chin. Phys. B 20 043102
[26] Olivares-Amaya R, Rappoport D, Munoz P A, Peng P, Mazur E and Aspuru-Guzik A 2012 J. Phys. Chem. C 116 15568
[27] Patra P P and Kumar G V P 2013 J. Phys. Chem. Lett. 4 1167
[28] Sivanesan A, Witkowska E, Adamkiewicz W, Dziewit L, Kaminska A and Waluk J 2014 The Analyst 139 1037
[29] Suntivich J, Xu Z, Carlton C E, Kim J, Han B, Lee S W, Bonnet N, Marzari N, Allard L F, Gasteiger H A, et al. 2013 J. Am. Chem. Soc. 135 7985
[30] Wang Y, Chen L and Liu P 2012 Chem. Eur. J. 18 5935
[31] Yin Y, Qiu T, Ma L, Lang X, Zhang Y, Huang G, Mei Y and Schmidt O G 2012 J. Phys. Chem. C 116 25504
[32] Zhou Y, Lee C, Zhang J and Zhang P 2013 J. Mater. Chem. C 1 3695
[33] Chen L, Li Z, Meng Y, Lu M, Wang Z and Zhang R Q 2013 J. Phys. Chem. C 117 12544
[34] Chen L, Gao Y, Xu H, Wang Z, Li Z and Zhang R Q 2014 Phys. Chem. Chem. Phys. 16 20665
[35] Chen L, Gao Y, Cheng Y, Li H, Wang Z, Li Z and Zhang R Q 2016 Nanoscale 8 4086
[36] Chen L, Gao Y, Cheng Y K, Su Y B, Wang Z G, Li Z Q and Zhang R Q 2015 J. Phys. Chem. C 119 17429
[37] Jensen L, Aikens C M and Schatz G C 2008 Chem. Soc. Rev. 37 1061
[38] Wu D Y, Li J F, Ren B and Tian Z Q 2008 Chem. Soc. Rev. 37 1025
[39] Schlucker S 2014 Angew. Chem. Int. Ed. 53 4756
[40] Valley N, Greeneltch N, Van Duyne R P and Schatz G C 2013 J. Phys. Chem. Lett. 4 2599
[41] Day P N, Nguyen K A and Pachter R 2010 J. Chem. Theory Comput. 6 2809
[42] Ramakrishna G, Varnavski O, Kim J, Lee D and Goodson T 2008 J. Am. Chem. Soc. 130 5032
[43] Yao H, Miki K, Nishida N, Sasaki A and Kimura K 2005 J. Am. Chem. Soc. 127 15536
[44] Gautier C and Bürgi T 2006 J. Am. Chem. Soc. 128 11079
[45] Gautier C, Taras R, Gladiali S and Buergi T 2008 Chirality 20 486
[46] Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C and Jin R 2009 J. Am. Chem. Soc. 131 2490
[47] Cao G J, Schwarz W H and Li J 2015 Inorg. Chem. 54 3695
[48] Gao Y, Dai X, Kang S G, Jimenez-Cruz C A, Xin M, Meng Y, Han J, Wang Z and Zhou R 2014 Sci. Rep. 4 5862
[49] Yadav B D and Kumar V 2010 Appl. Phys. Lett. 97 133701
[50] Mariscal M M, Oviedo O A and Leiva E P M 2012 Metal Clusters and Nanoalloys:From Modeling to Applications (Now York:Springer Science & Business Media)
[51] Kaltsoyannis N 2003 Chem. Soc. Rev. 32 9
[52] Wang D, van Gunsteren W F and Chai Z 2012 Chem. Soc. Rev. 41 5836
[53] Hayton T W 2013 Chem. Commun. 49 2956
[54] Pyykkö P 1988 Chem. Rev. 88 563
[55] van Lenthe E, Ehlers A and Baerends E J 1999 J. Chem. Phys. 110 8943
[56] van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
[57] van Lenthe E, Snijders J G and Baerends E J 1996 J. Chem. Phys. 105 6505
[58] van Lenthe E, Baerends E J and Snijders J G 1994 J. Chem. Phys. 101 9783
[59] van Lenthe E and Baerends E J 2003 J. Comput. Chem. 24 1142
[60] Kutepov A 2007 J. Alloys Compd. 444 174
[61] Ingram K I, Tassell M J, Gaunt A J and Kaltsoyannis N 2008 Inorg. Chem. 47 7824
[62] Wåhlin P, Danilo C, Vallet V, Réal F, Flament J P and Wahlgren U 2008 J. Chem. Theor. Comput. 4 569
[63] Cao X and Dolg M 2004 J. Mol. Struc. 673 203
[64] Jiang D E, Kühn M, Tang Q and Weigend F 2014 J. Phys. Chem. Lett. 5 3286
[65] Aikens C M 2011 J. Phys. Chem. Lett. 2 99
[66] Iwasa T, Nobusada K and Nakajima A 2013 J. Phys. Chem. C 117 24586
[67] Rauhalahti M and Mu?noz-Castro A 2015 RSC Adv. 5 18782
[68] Neugebauer J, Reiher M, Kind C and Hess B A 2002 J. Comput. Chem. 23 895
[69] Zhao L, Jensen L and Schalz G C 2006 J. Am. Chem. Soc. 128 2911
[70] Neukermans S, Janssens E, Tanaka H, Silverans R E and Lievens P 2003 Phys. Rev. Lett. 90 033401
[71] Zhai H J, Li J and Wang L S 2004 J. Chem. Phys. 121 8369
[72] Gong X G and Kumar V 1993 Phys. Rev. Lett. 70 2081
[73] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[74] Gagliardi L 2003 J. Am. Chem. Soc. 125 7504
[75] Roos B O, Malmqvist P Å and Gagliardi L 2006 J. Am. Chem. Soc. 128 17000
[76] Halcrow M A 2013 Chem. Soc. Rev. 42 1784
[77] Sato T, Lijnen E and Ceulemans A 2014 J. Chem. Theor. Comput. 10 613
[78] Pyykkö P and Atsumi M 2009 Chem. Eur. J. 15 186
[79] Janssens E, Tanaka H, Neukermans S, Silverans R E and Lievens P 2003 New J. Phys. 5 46
[80] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[81] Holtzl T, Janssens E, Veldeman N, Veszpremi T, Lievens P and Nguyen M T 2008 Chem. Phys. Chem. 9 833
[82] Häkkinen H and Landman U 2000 Phys. Rev. B 62 R2287
[83] Zhao L X, Feng X J, Zhang M and Luo Y H 2010 J. Clust. Sci. 21 701
[84] Negishi Y, Nobusada K and Tsukuda T 2005 J. Am. Chem. Soc. 127 5261
[85] Lopez-Acevedo O, Tsunoyama H, Tsukuda T and Aikens C M 2010 J. Am. Chem. Soc. 132 8210
[86] Wu D Y, Hayashi M, Chang C H, Liang K K and Lin S H 2003 J. Chem. Phys. 118 4073
[87] Wu D Y, Hayashi M, Lin S H and Tian Z Q 2004 Spectrochim Acta Part A 60 137
[88] Jensen L, Zhao L L and Schatz G C 2007 J. Phys. Chem. C 111 4756
[89] Tian Z Q, Ren B and Wu D Y 2002 J. Phys. Chem. B 106 9463
[90] Wu D Y, Liu X M, Duan S, Xu X, Bin B, Lin S H and Tian Z Q 2008 J. Phys. Chem. C 112 4195
[91] Aikens C M and Schatz G C 2006 J. Phys. Chem. A 110 13317
[92] Shinohara H 2000 Rep. Prog. Phys. 63 843
[93] Dai X, Gao Y, Jiang W, Lei Y and Wang Z 2015 Phys. Chem. Chem. Phys. 17 23308
[94] Jiang W and Wang Z 2015 J. Cluster Sci. 27 845
[95] Alivisatos A P 1996 Science 271 933
[96] Wu Z N, Liu J L, Gao Y, Liu H W, Li T T, Zou H Y, Wang Z G, Zhang K, Wang Y, Zhang H, et al. 2015 J. Am. Chem. Soc. 137 12906
[97] Gao Y, Zhou B, Kang S G, Xin M, Yang P, Dai X, Wang Z and Zhou R 2014 RSC Adv. 4 27146
[98] Gill R, Zayats M and Willner I 2008 Angew. Chem. Int. Ed. 47 7602
[99] Smith A M and Nie S 2008 J. Am. Chem. Soc. 130 11278
[100] Kilina S, Ivanov S and Tretiak S 2009 J. Am. Chem. Soc. 131 7717
[101] Pradhan M, Sarkar S, Sinha A K, Basu M and Pal T 2011 Crystengcomm 13 2878
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!