Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074202    DOI: 10.1088/1674-1056/25/7/074202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强)
Anhui University of Science and Technology, Huainan 232001, China
Abstract  A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power.
Keywords:  optomechanical system      optical parametric amplifier      stationary macroscopic entanglement  
Received:  27 December 2015      Revised:  01 March 2016      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.
Corresponding Authors:  Cai-yun Zhang     E-mail:  zcylh9@163.com

Cite this article: 

Cai-yun Zhang(张彩云), Hu Li(李虎), Gui-xia Pan(潘桂侠), Zong-qiang Sheng(圣宗强) Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier 2016 Chin. Phys. B 25 074202

[1] Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[2] Law C K 1995 Phys. Rev. A 51 2537
[3] Chen X, Liu X W, Zhang K Y, Yuan C H and Zhang W P 2015 Acta.Phys. Sin. 64 164211 (in Chinese)
[4] Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4175
[5] Bose S, Jacobs K and Knight P L 1999 Phys. Rev. A 59 3204
[6] vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[7] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[8] Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
[9] Paternostro M, Vitali D, Gigan S,. Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
[10] Wu Q, Xiao Y and Zhang Z M 2015 Chin. Phys. B 24 104208
[11] Barzanjeh S, Vitali D, Tombesi P and Milburn G 2011 Phys. Rev. A 84 042342
[12] Chiara G D, Paternostro M and Palma G M 2011 Phys. Rev. A 83 052324
[13] Tan H T and Li G X 2011 Phys. Rev. A 84 024301
[14] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[15] Verhagen E, Deléglise S, Weis S, Schliesser A and Kippenberg T J 2012 Nature 482 10787
[16] Collett M J and Gardiner C W 1984 Phys. Rev. A 30 1386
[17] Agarwal G S 2006 Phys. Rev. Lett. 97 023601
[18] Mehmet M, Vahlbruch H, Lastzka N, Danzmann K and Schnabel R 2010 Phys. Rev. A 81 013814
[19] Eckstein A, Christ A, Mosley P J and Silberhorn C 2011 Phys. Rev. Lett. 106 013603
[20] Zhang J, Ye C, Gao F and Xiao M 2008 Phys. Rev. Lett. 101 233602
[21] Zhao C Y 2015 Chin. Phys. B 24 040302
[22] Silberhorn C, Lam P K, Weiß F, König O, Korolkova N and Leuchs G 2001 Phys. Rev. Lett. 86 4267
[23] He W P and Li F L 2007 Phys. Rev. A 76 012328
[24] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D and Peng K C 2012 Phys. Rev. A 85 040305
[25] Chen H X and Zhang J 2009 Phys. Rev. A 79 063826
[26] Shang Y N, Jia X J, Shen Y M, Xie C D and Peng K C 2010 Opt. Lett. 35 853
[27] Zhou Y Y, Jia X J, Li F, Yu J, Xie C D and Peng K C 2015 Scientific Reports 5 11132
[28] Walls D F and Milburn G J 1998 Optics (Berlin: Springer)
[29] Dejesus E X and Kaufman C 1998 Phys. Rev. A 35 5288
[30] Genes C, Mari A, Tombesi P andVitali D 2008 Phys. Rev. A 78 032316
[31] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[32] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[33] Mazzola L and Paternostro M 2011 Phys. Rev. A 83 062335
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[12] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[13] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[14] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[15] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
No Suggested Reading articles found!