Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076202    DOI: 10.1088/1674-1056/25/7/076202
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

Unreacted equation of states of typical energetic materials under static compression: A review

Zhaoyang Zheng(郑朝阳)1,2, Jijun Zhao(赵纪军)1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data.

Keywords:  energetic material      equation of state      bulk modulus      compression  
Received:  23 June 2015      Revised:  22 July 2015      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  31.15.A- (Ab initio calculations)  
  66.70.Lm (Other systems such as ionic crystals, molecular crystals, nanotubes,etc.)  
  64.30.-t (Equations of state of specific substances)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).

Corresponding Authors:  Jijun Zhao     E-mail:  zhaojj@dlut.edu.cn

Cite this article: 

Zhaoyang Zheng(郑朝阳), Jijun Zhao(赵纪军) Unreacted equation of states of typical energetic materials under static compression: A review 2016 Chin. Phys. B 25 076202

[1] Peiris S M and Piermarini G J 2008 Static Compression of Energetic Materials (Berlin: Springer) pp. 99-101
[2] Agrawal J P 2010 High Energy Materials: Propellants, Explosives and Pyrotechnics (New York: John Wiley & Sons) pp. 69-162
[3] Manaa M R 2005 Chemistry at Extreme Conditions (New York: Elsevier) pp. 269-326
[4] Sabin JElsevier Science) pp. 1-332
[5] Murnaghan F 1944 Proceedings of the National Academy of Sciences of the United States of America 30 244
[6] Birch F 1947 Phys. Rev. 71 809
[7] Vinet P, Smith J R, Ferrante J and Rose J H 1987 Phys. Rev. B 35 1945
[8] Poirier J P and Tarantola A 1998 Physics of the Earth and Planetary Interiors 109 1
[9] Cohen R E, Gülseren O and Hemley R J 2000 American Mineralogist 85 338
[10] Holzapfel W B 2002 High Pressure Research 22 209
[11] Lysne P C and Hardesty D R 1973 J. Chem. Phys. 59 6512
[12] Cromer D T, Ryan R R and Schiferl D 1985 J. Phys. Chem. 89 2315
[13] Yarger F L and Olinger B 1986 J. Chem. Phys. 85 1534
[14] Citroni M, Datchi F, Bini R, Di Vaira M, Pruzan P, Canny B and Schettino V 2008 J. Phys. Chem. B 112 1095
[15] Liu H, Zhao J, Wei D and Gong Z 2006 J. Chem. Phys. 124 124501
[16] Zerilli F J, Hooper J P and Kuklja M M 2007 J. Chem. Phys. 126 114701
[17] Mota O U O and Ç ağin T 2011 Journal of Loss Prevention in the Process Industries 24 805
[18] Conroy M W, Oleynik I I, Zybin S V and White C T 2009 J. Phys. Chem. A 113 3610
[19] Sorescu D C and Rice B M 2010 J. Phys. Chem. C 114 6734
[20] Dick J J 1993 J. Phys. Chem. 97 6193
[21] Slough W and Perger W F 2010 Chem. Phys. Lett. 498 97
[22] Yoo C S and Cynn H 1999 J. Chem. Phys. 111 10229
[23] Gump J C and Peiris S M 2005 J. Appl. Phys. 97 053513
[24] Byrd E F C and Rice B M 2007 J. Phys. Chem. C 111 2787
[25] Olinger B W R B, Cady H H 1978 Symposium international Sur Le Comportement Des Milieus Denses Sous Hautes Pressions Dynamiques; Commissariat a l'Energie Atomique Cnetre d'Etudes de Vajours: Paris, France 1978 3
[26] Conroy M, Oleynik I I, Zybin S V and White C T 2007 AIP Conference Proceedings 955 361
[27] Conroy M W, Oleynik I I, Zybin S V and White C T 2008 J. Appl. Phys. 104 053506
[28] Zerilli F J and Kuklja M M 2006 J. Phys. Chem. A 110 5173
[29] Zerilli F J and Kuklja M M 2010 J. Phys. Chem. A 114 5372
[30] Qiu L, Zhu W H, Xiao J J and Xiao H M 2008 J. Phys. Chem. B 112 3882
[31] Zhu W, Zhang X, Wei T and Xiao H 2009 Theor. Chem. Acc. 124 179
[32] Zhu W, Zhang X, Zhu W and Xiao H 2008 Physical Chemistry Chemical Physics 10 7318
[33] Lu L Y, Wei D Q, Chen X R, Lian D, Ji G F, Zhang Q M and Gong Z Z 2008 Molecular Physics 106 2569
[34] Lian D, Lu L Y, Wei D Q, Zhang Q M, Gong Z Z and Guo Y X 2008 Chin. Phys. Lett. 25 899
[35] Sewell T D 1998 J. Appl. Phys. 83 4142
[36] Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y and Wei D Q 2010 J. Phys. Chem. A 114 1082
[37] Cui H L, Ji G F, Zhao J J, Zhao F, Chen X R, Zhang Q M and Wei D Q 2010 Molecular Simulation 36 670
[38] Chen J, Long Y, Liu Y, Nie F and Sun J 2011 Sci. China Phys. Mech. Astron. 54 831
[39] Long Y and Chen J 2014 Philosophical Magazine 94 2656
[40] Hooks D E, Hayes D B, Hare D E, Reisman D B, Vandersall K S, Forbes J W and Hall C A 2006 J. Appl. Phys. 99 124901
[41] Peng Q, Rahul, Wang G, Liu G R and De S 2014 Physical Chemistry Chemical Physics 16 19972
[42] Oswald I D H, Millar D I A, Davidson A J, Francis D J, Marshall W G, Pulham C R, Cumming A, Lennie A R and Warren J E 2010 High Pressure Research 30 280
[43] Zhao J, Winey J M, Gupta Y M and Perger W 2006 AIP Conference Proceedings 845 555
[44] Conroy M W, Oleynik I I, Zybin S V and White C T 2008 J. Appl. Phys. 104 113501
[45] Hunter S, Sutinen T, Parker S F, Morrison C A, Williamson D M, Thompson S, Gould P J and Pulham C R 2013 J. Phys. Chem. C 117 8062
[46] Millar D I A, Oswald I D H, Francis D J, Marshall W G, Pulham C R and Cumming A S 2009 Chemical Communications 562
[47] Gump J C, Stoltz C A, Freedman B G and Peiris S M 2009 AIP Conference Proceedings 1195 541
[48] Gump J C and Peiris S M 2008 J. Appl. Phys. 104 083509
[49] Gump J C, Stoltz C A, Mason B P, Freedman B G, Ball J R and Peiris S M 2011 J. Appl. Phys. 110 073523
[50] Wu Q, Yang C, Pan Y, Xiang F, Liu Z, Zhu W and Xiao H 2013 J. Mol. Model 19 5159
[51] Manaa M R, Kuo I-F W and Fried L E 2014 J. Chem. Phys. 141 064702
[52] Gump J C, Wong C P, Zerilli F J and Peiris S M 2004 AIP Conference Proceedings 706 963
[53] Gump J C, Stoltz C A and Peiris S M 2007 AIP Conference Proceedings 955 127
[54] Sorescu D C, Rice B M and Thompson D L 1999 J. Phys. Chem. B 103 6783
[55] Xu X J, Zhu W H and Xiao H M 2007 J. Phys. Chem. B 111 2090
[56] Gump J C, Stoltz C, Mason B P and Heim E M 2012 AIP Conference Proceedings 1426 575
[57] Gump J C 2014 Journal of Physics: Conference Series 500 052014
[58] Zhu W, Shi C and Xiao H 2009 Journal of Molecular Structure: THEOCHEM 910 148
[59] Bowden P R, Chellappa R S, Dattelbaum D M, Manner V W, Mack N H and Liu Z 2014 Journal of Physics: Conference Series 500 052006
[60] Olinger B and Cady H H 1976 6th Symposium (International) on Detonation, Coronado, California, USA, August 24-27, 224
[61] Stevens L L, Velisavljevic N, Hooks D E and Dattelbaum D M 2008 Propellants, Explosives, Pyrotechnics 33 286
[62] Liu H, Zhao J, Du J, Gong Z, Ji G and Wei D 2007 Phys. Lett. A 367 383
[63] Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I and White C T 2010 J. Appl. Phys. 107 113524
[64] Fedorov I A and Zhuravlev Y N 2014 Chemical Physics 436-437 1
[65] Wu Q, Zhu W and Xiao H 2014 RSC Adv. 4 53149
[66] Olinger B, Halleck P M and Cady H H 1975 J. Chem. Phys. 62 4480
[67] Oleynik I I, Conroy M, Zybin S V, Zhang L, van Duin A C, Goddard W A and White C T 2006 AIP Conference Proceedings 845 573
[68] Conroy M W, Oleynik I I, Zybin S V and White C T 2008 Phys. Rev. B 77 094107
[69] Peiris S M, Wong C P and Zerilli F J 2004 J. Chem. Phys. 120 8060
[70] Hunter S, Coster P L, Davidson A J, Millar D I A, Parker S F, Marshall W G, Smith R I, Morrison C A and Pulham C R 2015 J. Phys. Chem. C 119 2322
[71] Zerilli F J and Kuklja M M 2007 J. Phys. Chem. A 111 1721
[72] Wu Q, Zhu W and Xiao H 2013 J. Mol. Model 19 4039
[73] Xiang F, Wu Q, Zhu W and Xiao H 2014 Struct. Chem. 25 1625
[74] Peiris S M, Pangilinan G I and Russell T P 2000 J. Phys. Chem. A 104 11188
[75] Wu Q, Zhu W and Xiao H 2015 Struct. Chem. 26 477
[76] Li S, Li Q, Wang K, Zhou M, Huang X, Liu J, Yang K, Liu B, Cui T, Zou G and Zou B 2013 J. Phys. Chem. C 117 152
[77] Liu Y, Gong X, Wang L and Wang G 2011 J. Phys. Chem. C 115 11738
[78] Liu Y, Zhang L, Wang G, Wang L and Gong X 2012 J. Phys. Chem. C 116 16144
[79] Wang F, Du H C, Liu H and Gong X D 2012 Journal of Computational Chemistry 33 1820
[80] Liu Y, Du H, Wang G, Gong X and Wang L 2012 Struct. Chem. 23 1631
[81] Ciezak J A 2010 Propellants, Explosives, Pyrotechnics 35 373
[82] Ciezak J A 2010 Propellants, Explosives, Pyrotechnics 35 550
[83] Ciezak J A 2010 Propellants, Explosives, Pyrotechnics 35 24
[84] Ciezak J A 2011 Propellants, Explosives, Pyrotechnics 36 446
[85] Klapötke T M, Mayer P, Miró Sabaté C, Welch J M and Wiegand N 2008 Inorganic Chemistry 47 6014
[86] Klapötke T M and Miró Sabaté C 2008 European Journal of Inorganic Chemistry 2008 5350
[87] Klapotke T M, Miro Sabate C and Rasp M 2009 Journal of Materials Chemistry 19 2240
[88] Klapötke T M, Penger A, Pflüger C, Stierstorfer J and Sućeska M 2013 European Journal of Inorganic Chemistry 2013 4667
[89] Klapötke T M, Petermayer C, Piercey D G and Stierstorfer J 2012 J. Am. Chem. Soc. 134 20827
[90] Klapötke T M, Piercey D G and Stierstorfer J 2011 Propellants, Explosives, Pyrotechnics 36 160
[91] Klapötke T M, Piercey D G, Stierstorfer J and Weyrauther M 2012 Propellants, Explosives, Pyrotechnics 37 527
[92] Klapötke T M and Sabaté C M 2008 Chemistry of Materials 20 1750
[93] Klapötke T M and Sabaté C M 2008 Chemistry of Materials 20 3629
[94] Klapötke T M and Stierstorfer J 2008 European Journal of Inorganic Chemistry 2008 4055
[95] Klapötke T M, Stierstorfer J and Wallek A U 2008 Chemistry of Materials 20 4519
[1] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[2] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[3] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[4] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[5] Mechanical and microstructural response of densified silica glass under uniaxial compression: Atomistic simulations
Yi-Fan Xie(谢轶凡), Feng Feng(冯锋), Ying-Jun Li(李英骏)†, Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立)‡, and Yong Mei(梅勇)§. Chin. Phys. B, 2020, 29(10): 108101.
[6] Energetic few-cycle pulse compression in gas-filled hollow core fiber with concentric phase mask
Yu Zhao(赵钰), Zhi-Yuan Huang(黄志远), Rui-Rui Zhao(赵睿睿), Ding Wang(王丁), Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2019, 28(6): 064207.
[7] Phase transitions in bismuth under rapid compression
Dong-Liang Yang(杨栋亮), Jing Liu(刘景), Chuan-Long Lin(林传龙), Qiu-Min Jing(敬秋民), Yi Zhang(张毅), Yu Gong(宫宇), Yan-Chun Li(李延春), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(3): 036201.
[8] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[9] Equation of state of LiCoO2 under 30 GPa pressure
Yong-Qing Hu(户永清), Lun Xiong(熊伦), Xing-Quan Liu(刘兴泉), Hong-Yuan Zhao(赵红远), Guang-Tao Liu(刘广涛), Li-Gang Bai(白利刚), Wei-Ran Cui(崔巍然), Yu Gong(宫宇), Xiao-Dong Li(李晓东). Chin. Phys. B, 2019, 28(1): 016402.
[10] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
[11] Compression behavior and phase transition of β-Si3N4 under high pressure
Hong-xia Gong(龚红霞), Zi-li Kou(寇自力), Cong Fan(樊聪), Hao Liang(梁浩), Qi-ming Wang(王齐明), Lei-lei Zhang(张雷雷), Fang Peng(彭放), Ming Yang(杨鸣), Xiao-lin Ni(倪小林), Jing Liu(刘景). Chin. Phys. B, 2018, 27(5): 056101.
[12] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[13] Generation of few-cycle radially-polarized infrared pulses in a gas-filled hollow-core fiber
Rui-Rui Zhao(赵睿睿), Zhi-Yuan Huang(黄志远), Ding Wang(王丁), Yu Zhao(赵钰), Yu-Xin Leng(冷雨欣), Ru-Xin Li(李儒新). Chin. Phys. B, 2018, 27(10): 104204.
[14] High-pressure synchrotron x-ray diffraction and Raman spectroscopic study of plumbogummite
Duan Kang(康端), Xiang Wu(巫翔), Guan Yuan(袁冠), Sheng-Xuan Huang(黄圣轩), Jing-Jing Niu(牛菁菁), Jing Gao(高静), Shan Qin(秦善). Chin. Phys. B, 2018, 27(1): 017402.
[15] Pressure-induced phase transition of B-type Y2O3
Qian Zhang(张倩), Xiang Wu(巫翔), Shan Qin(秦善). Chin. Phys. B, 2017, 26(9): 090703.
No Suggested Reading articles found!