Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058104    DOI: 10.1088/1674-1056/25/5/058104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method

Ying-Zi Peng(彭英姿)1,2, Yang Song(宋扬)1, Xiao-Qiang Xie(解晓强)1, Yuan Li(李源)1,2, Zheng-Hong Qian(钱正洪)2, Ru Bai(白茹)2
1. Department of Physics, School of Science, Hangzhou Dianzi University, Hangzhou 310018, China;
2. Center for Integrated Spintronic Devices, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Atomic-layer MoS2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy (AFM), x-ray diffraction (XRD), high-resolution transition electron microscopy (HRTEM), photoluminescence (PL), and x-ray photoelectron spectroscopy (XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation (002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasi-honeycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS2. The stoichiometric mole ratio of S/Mo is about 2.0-2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS2 under our experimental conditions.
Keywords:  atomic-layer MoS2      hot filament chemical vapor deposition      high-resolution transition electron microscopy (HRTEM)      x-ray photoelectron spectroscopy (XPS)  
Received:  25 November 2015      Revised:  25 December 2015      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.55.ag (Semiconductors)  
  68.55.Nq (Composition and phase identification)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY16F040003 and LY16A040007) and the National Natural Science Foundation of China (Grant Nos. 51401069 and 11574067).
Corresponding Authors:  Ying-Zi Peng     E-mail:  yingzip@hdu.edu.cn

Cite this article: 

Ying-Zi Peng(彭英姿), Yang Song(宋扬), Xiao-Qiang Xie(解晓强), Yuan Li(李源), Zheng-Hong Qian(钱正洪), Ru Bai(白茹) Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method 2016 Chin. Phys. B 25 058104

[1] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[2] Xia H D, Li H P, Lan C Y, Li C, Deng G L, Li J F and Liu Y 2015 Chin. Phys. B 24 084206
[3] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[4] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[5] Wang Z Y, Zhou Y L, Wang X Q, Wang F, Sun Q, Guo Z X and Jia Y 2015 Chin. Phys. B 24 026501
[6] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L and Feng J 2012 Nat. Commun. 3 8871
[7] Mann J, Ma Q, Odenthal P M, Isarraraz M, Le D, Preciado E, Barroso D, Yamaguchi K, Palacio G S, Nguyen A, Tran T, Wurch M, Nguyen A, Klee V, Bobek S, Sun D, Heinz T F, Rahman T S, Kawakami R and Bartels L 2014 Adv. Mater. 26 1399
[8] Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I and Idrobo J C 2013 Nano Lett. 13 2615
[9] Huang K J, Zhang J Z, Liu Y J and Wang L L 2014 Senso Actuat. B: Chem. 194 303
[10] Song J G, Park J, Lee W, Choi T, Jung H, Lee C W, Hwang S H, Myoung J M, Jung J H, Kim S H, C L M and Kim H 2013 ACS Nano 7 11333
[11] Gatensby R, McEvoy N, Lee K, Hallam T, Berner N C, Rezvani E, Winters S, Brien M and Duesberg G S 2014 Appl. Surf. Sci. 297 139
[12] Song Y, Peng Y Z, You S P, Sun K W, Chen J and Qian Z H 2015 AIP Adv. 5 067119
[13] Liang P, Shen T, Shu H B and Xing S 2015 Solid State Commun. 218 25
[14] Wang X W, Zhang Z, Chen Y Q, Qu Y H, Lai Y Q and Li J 2014 J. Alloy Compd . 600 84
[15] Tenne R, Margulis L, Genut M and Hodes G 1992 Nature 360 444
[16] Gutierrez H R, Lopez N P, Elías A L, Berkdemir A, Wang B, Lv R, Urías F L, Crespi V H, Terrones H and Terrones M 2013 Nano Lett. 13 3447
[17] Xu K, Wang Z X, Du X L, Safdar M, Jiang C and He J 2013 Nanotechnology 24 465705
[18] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490
[19] Peng Y Z, Li Y, Bai R, Huo D X and Qian Z H 2014 Chin. Phys. B 23 097503
[20] John F W 1990 An Introduction to Surface Analysis by Electron Spectroscopy (Royal Microscopical Society, UK Oxford University Press) p. 16
[21] Baker M A, Gilmore R, Lenardi C and Gissler W 1999 Appl. Surf. Sci. 150 255
[1] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[2] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
[3] Observation of oscillations in the transport for atomic layer MoS2
Xiao-Qiang Xie(解晓强), Ying-Zi Peng(彭英姿), Qi-Ye Zheng(郑奇烨), Yuan Li(李源), Ji Chen(陈吉). Chin. Phys. B, 2018, 27(2): 028103.
[4] Landscape of s-triazine molecule on Si(100) by a theoretical x-ray photoelectron spectroscopy and x-ray absorption near-edge structure spectra study
Jing Hu(胡静), Xiu-Neng Song(宋秀能), Sheng-Yu Wang(王胜雨), Juan Lin(林娟), Jun-Rong Zhang(张俊荣), Yong Ma(马勇). Chin. Phys. B, 2018, 27(11): 113101.
[5] A nano-scale mirror-like surface of Ti-6Al-4V attained by chemical mechanical polishing
Chenliang Liang(梁晨亮), Weili Liu(刘卫丽), Shasha Li(李沙沙), Hui Kong(孔慧), Zefang Zhang(张泽芳), Zhitang Song(宋志棠). Chin. Phys. B, 2016, 25(5): 058301.
[6] Photoelectric characteristics of silicon P-N junction with nanopillar texture:Analysis of X-ray photoelectron spectroscopy
Liu Jing (刘静), Wang Jia-Ou (王嘉鸥), Yi Fu-Ting (伊福廷), Wu Rui (吴蕊), Zhang Nian (张念), Ibrahim Kurash (奎热西). Chin. Phys. B, 2014, 23(9): 096101.
No Suggested Reading articles found!