Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 056401    DOI: 10.1088/1674-1056/25/5/056401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of pressure on electronic and thermoelectric properties of magnesium silicide: A density functional theory study

Kulwinder Kaur, Ranjan Kumar
Department of Physics, Panjab University, Chandigarh-160014, India
Abstract  We study the effect of pressure on electronic and thermoelectric properties of Mg2}Si using the density functional theory and Boltzmann transport equations. The variation of lattice constant, band gap, bulk modulus with pressure is also analyzed. Further, the thermoelectric properties (Seebeck coefficient, electrical conductivity, electronic thermal conductivity) have been studied as a function of temperature and pressure up to 1200 K. The results show that Mg2Si is an n-type semiconductor with a band gap of 0.21 eV. The negative value of the Seebeck coefficient at all pressures indicates that the conduction is due to electrons. With the increase in pressure, the Seebeck coefficient decreases and electrical conductivity increases. It is also seen that, there is practically no effect of pressure on the electronic contribution of thermal conductivity. The paper describes the calculation of the lattice thermal conductivity and figure of merit of Mg2}Si at zero pressure. The maximum value of figure of merit is attained 1.83×10-3 at 1000 K. The obtained results are in good agreement with the available experimental and theoretical results.
Keywords:  semiconductors      effects of pressure      electric and thermal conductivity      density functional theory  
Received:  21 December 2015      Revised:  15 January 2016      Accepted manuscript online: 
PACS:  64.70.kg (Semiconductors)  
  74.62.Fj (Effects of pressure)  
  74.25.fc (Electric and thermal conductivity)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Council of Scientific & Industrial Research (CSIR), India.
Corresponding Authors:  Kulwinder Kaur     E-mail:  kulwinderphysics@gmail.com

Cite this article: 

Kulwinder Kaur, Ranjan Kumar Effect of pressure on electronic and thermoelectric properties of magnesium silicide: A density functional theory study 2016 Chin. Phys. B 25 056401

[1] Wood C 1988 Rep. Prog. Phys. 51 459
[2] Liu Z, Watanabe M and Hanabusa M 2001 Thin Solid Films 381 262
[3] Borisenko V E 2000 Semiconducting Silicides (Springer-Verlag) p. 285
[4] Morris R G, Redin R D and Danielson G C 1958 Phys. Rev. 109 1909
[5] Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T and Hamada N 2008 J. Appl. Phys. 104 013703
[6] Yu Z, Xie Q, Xiao Q and Zhao K 2009 Acta Phys. Sin. 58 6889 (in Chinese)
[7] Li C, Wu Y, Li H and Liu X 2009 J. Alloys Compd. 477 212
[8] Wang X N, Wang Y, Zou J, Zhang T C, Mei Z X, Guo Y and Zhang Z 2009 Chin. Phys. B 18 3079
[9] Bashenov V K, Mutal A M and Timofeenko V V 1978 Phys. Status Solidi B 87 77
[10] Aizawa T and Song R 2006 Intermetallics 14 382
[11] DiSalvo F J 1999 Science 285 703
[12] Snyder G J and Ursell T S 2003 Phys. Rev. Lett. 91 148301
[13] Baranek P, Schamps J and Noiret I 1997 J. Phys. Chem. B 101 9147
[14] Baranek P and Schamps J 1999 J. Phys. Chem. B 103 2601
[15] Tani J I and Kido H 2008 Comput. Mater. Sci. 42 531
[16] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207
[17] Isoda Y, Tada S, Nagai T, Fujiu H and Shinohara Y 2010 Mater. Trans. 51 868
[18] Jung J Y and Kim I H 2010 Electron. Mater. Lett. 6 187
[19] Kim K H, Choi S M and Seo W S 2010 J. Korean Phy. Soc. 57 1072
[20] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[21] Yu B, Chen D, Tang Q, Wang C and Shi D 2010 J. Phys. Chem. Solids 71 758
[22] Yu F, Sun J X, Yang W, Tian R G and Ji G F 2010 Solid State Commun. 150 620
[23] Hao J, Zou B, Zhu P, Gao C, Li Y, Liu D and Zou G 2009 Solid State Commun. 149 689
[24] Hao J 2008 Studies on the Characteristics and Structure Transformation of Magnesium Silicide under High Pressure (Jilin University)
[25] Murtaza G, Sajid A, Rizwan M, Takagiwa Y, Khachai H, Jibran M and Omran S B 2015 Mat. Sci. Semiconduct. Process. 40 429
[26] Ziman J M 2001 Electrons and Phonons Oxford Classics Series (Oxford: Clarendon Press)
[27] Kulwinder K and Ranjan K 2016 Chin. Phys. B 25 26402
[28] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Corso A D, Gironcoli S de, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Conden. Matter 21 395502
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3864
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
[32] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[33] Jodin L, Tobola J, Pecheur P, Scherrer H and Kaprzyk S 2004 Phys. Rev. B 70 184207
[34] Ong K P, Singh D J and Wu P 2011 Phys. Rev. B 83 115110
[35] Zou D F, Xie S H, Liu Y Y, Lin J G and Li J Y 2013 J. Appl. Phys. 113 193705
[36] Tani J I and Kido H 2007 Intermetallics 15 120237
[37] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[38] Ma J, Li W and Luo X 2014 Appl. Phys. Lett. 105 082103
[39] Carrete J, Mingo N and Curtarolo S 2014 Appl. Phys. Lett. 105 101907
[40] Munrnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[41] Pandit P and Sanyal S P 2011 Indian Journal of Pure and Applied Physics 49 692
[42] Fan W, Chen R, Wang L, Han P and Meng Q 2011 J. Electron. Mater. 40 1209
[43] Boulet P, Verstraete M J, Crocombette J P, Briki M and Record M C 2011 Comput. Mater. Sci. 50 847
[44] Gunnarsson O and Schönhammer K 1986 Phys. Rev. Lett. 56 1968
[45] Poopanya P and Yangthaisong A 2013 Physics of Semiconductors: Proceedings of the 31st International Conference on the Physics of Semiconductors 2012 p. 415 (AIP Publishing)
[46] You S W and Kim I H 2011 Curr. Appl. Phys. 11 392
[47] Corkill J L and Cohen M L 1993 Phys. Rev. B 48 17138
[48] Kalarasse F and Bennecer B 2008 J. Phys. Chem. Solids 69 1775
[49] Clark C R, Wright C, Suryanarayana C, Baburaj E G and Froes F H 1997 Mat. Lett. 33 71
[50] Fu G, Zuo L, Longtin J, Nie C and Gambino R 2013 J. Appl. Phys. 114 144905
[51] Tani J I and Kido H 2007 Intermetallics 15 1202
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!