Two-point resistance of an m ×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中)
Department of Physics, Nantong University, Nantong 226019, China

Abstract A rectangular m ×n resistor network with an arbitrary boundary is investigated, and a general resistance formula between two nodes on an arbitrary axis is derived by the Recursion-Transform (RT) method, a problem that has never been resolved before, for the Green's function technique and the Laplacian matrix approach are inapplicable to it. To have the exact solution of resistance is important but it is difficult to obtain under the condition of arbitrary boundary. Our result is directly expressed in a single summation and mainly composed of characteristic roots, which contain both finite and infinite cases. Further, the current distribution is given explicitly as a byproduct of the method. Our framework can be effectively applied to RLC networks. As an application to the LC network, we find that our formulation leads to the occurrence of resonances at h _{1} = 1-cosφ _{i} -sinφ _{i} cotn φ _{i} . This somewhat curious result suggests the possibility of practical applications of our formulae to resonant circuits.

Key words ：
rectangular network
exact solution
RT method
complex impedance
Received: 18 November 2015
Fund: Project supported by the Prophase Preparatory Project of Natural Science Foundation of Nantong University, China (Grant No. 15ZY16).

Corresponding Authors: Zhi-Zhong Tan
E-mail: tanz@ntu.edu.cn,tanzzh@163.com

[1]
Kirchhoff G 1847 Ann. Phys. Chem. 148 497
[2]
Kirkpatrick S 1973 Rev. Mod. Phys. 45 574
[3]
Klein D J and Randi M 1993 J. Math. Chem. 12 81
[4]
Xiao W J and Gutman I 2003 Theory Chem. Acc. 110 284
[5]
Cserti J 2000 Am. J. Phys. 68 896
[6]
Asad J H 2013 J. Stat. Phys. 150 1177
[7]
Asad J H 2013 Mod. Phys. Lett. B 27 1350112
[8]
Wu F Y 2004 J. Phys. A: Math. Gen. 37 6653
[9]
Tzeng W J and Wu F Y 2006 J. Phys. A: Math. Gen. 39 8579
[10]
Izmailian N Sh, Kenna R and Wu F Y 2014 J. Phys. A: Math. Theor. 47 035003
[11]
Tan Z Z 2011 Resistance Network Model (Xi'an, China: Xidian University Press)
[12]
Tan Z Z, Zhou L and Yang J H 2013 J. Phys. A: Math. Theor. 46 195202
[13]
Tan Z Z, Zhou L and Luo D F 2015 Int. J. Circ. Theor. Appl. 43 329
[14]
Tan Z Z 2015 Int. J. Circ. Theor. Appl. 43 1687
[15]
Tan Z Z, Essam J W and Wu F Y 2014 Phys. Rev. E 90 012130
[16]
Essam J W, Tan Z Z and Wu F Y 2014 Phys. Rev. E 90 032130
[17]
Tan Z Z and Fang J H 2015 Commun. Theor. Phys. 63 36
[18]
Tan Z Z 2015 Chin. Phys. B 24 020503
[19]
Tan Z Z 2015 Phys. Rev. E 91 052122
[20]
Tan Z Z 2015 Sci. Rep. 5 11266
[21]
Tan Z Z and Zhang Q H 2015 Int. J. Circ. Theor. Appl. 43 944
[22]
Whan C B and Lobb C J 1996 Phys. Rev. E 53 405
[23]
Zhuang J, Yu G R and Nakayama K 2014 Sci. Rep. 4 06720
[24]
Jia L P, Jasmina T and Duan W S 2015 Chin. Phys. Lett. 32 040501
[25]
Qin M P, Chen J, Chen Q N, Xie Z Y, Kong X, Zhao H H, Bruce N and Xiang T 2013 Chin. Phys. Lett. 30 076402
[26]
Wang B, Huang H L, Sun Z Y and Kou S P 2012 Chin. Phys. Lett. 29 120301
[27]
Wang H N, Chen D, Pan W, Xue Y and He H D 2014 Chin. Phys. B 23 080505
[28]
Xiao Q, Pan X, Li X L, Mutua S, Yang H J, Jiang Y, Wang J Y and Zhang Q J 2014 Chin. Phys. B 23 078904
[29]
Li M and Wang B H 2014 Chin. Phys. B 23 076402
[30]
Zhang L S, Liao X H, Mi Y Y, Qian Y and Hu G 2014 Chin. Phys. B 23 078906

[1]
Zhi-Zhong Tan. Recursion-transform method and potential formulae of the m ×n cobweb and fan networks [J]. Chin. Phys. B, 2017, 26(9): 90503-090503.
[2]
Xuchu Huang. Exact solutions of an Ising spin chain with a spin-1 impurity [J]. Chin. Phys. B, 2017, 26(3): 37501-037501.
[3]
Ozkan Guner, Ahmet Bekir. Bright and dark soliton solutions for some nonlinear fractional differential equations [J]. Chin. Phys. B, 2016, 25(3): 30203-030203.
[4]
Hakan Ciftci, H F Kisoglu. Application of asymptotic iteration method to a deformed well problem [J]. Chin. Phys. B, 2016, 25(3): 30201-030201.
[5]
Yan Qi, Song-Wei Lv, An Du, Nai-sen Yu. Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder [J]. Chin. Phys. B, 2016, 25(11): 117501-117501.
[6]
Liu Yan-Xia, Ye Jun, Li Yuan-Yuan, Zhang Yun-Bo. Improvement of variational approach in an interacting two-fermion system [J]. Chin. Phys. B, 2015, 24(8): 86701-086701.
[7]
Tan Zhi-Zhong. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary [J]. Chin. Phys. B, 2015, 24(2): 20503-020503.
[8]
Liu Ping, Zeng Bao-Qing, Yang Jian-Rong, Ren Bo. Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system [J]. Chin. Phys. B, 2015, 24(1): 10202-010202.
[9]
Zhu Wei-Ting, Ma Song-Hua, Fang Jian-Ping, Ma Zheng-Yi, Zhu Hai-Ping. Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system [J]. Chin. Phys. B, 2014, 23(6): 60505-060505.
[10]
Fan Tian-You, Li Xian-Fang. The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution [J]. Chin. Phys. B, 2014, 23(4): 46102-046102.
[11]
Zhang Jin-Liang, Wang Hong-Xian. Exact solutions and linear stability analysis for two-dimensional Ablowitz–Ladik equation [J]. Chin. Phys. B, 2014, 23(4): 44208-044208.
[12]
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation [J]. Chin. Phys. B, 2014, 23(1): 10307-010307.
[13]
He Shu, Zhang Yu-Yu, Chen Qing-Hu, Ren Xue-Zao, Liu Tao, Wang Ke-Lin. Unified analytical treatments to qubit-oscillator systems [J]. Chin. Phys. B, 2013, 22(6): 64205-064205.
[14]
Chen Yuan-Ming, Ma Song-Hua, Ma Zheng-Yi. New exact solutions of (3+1)-dimensional Jimbo-Miwa system [J]. Chin. Phys. B, 2013, 22(5): 50510-050510.
[15]
Vikas Kumar, R. K. Gupta, Ram Jiwari. Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation [J]. Chin. Phys. B, 2013, 22(5): 50201-050201.