Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048401    DOI: 10.1088/1674-1056/25/4/048401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot

M Tiotsop1, A J Fotue1, S C Kenfack1, N Issofa1, H Fotsin2, L C Fai1
1 Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, P. O. Box 479 Dschang, Cameroon;
2 Laboratory of Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, P. O. Box 67 Dschang, Cameroon
Abstract  In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.
Keywords:  Shannon entropy      polaron      electric field      triangular quantum dot  
Received:  11 November 2015      Revised:  30 December 2015      Accepted manuscript online: 
PACS:  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  65.40.gd (Entropy)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  71.38.-k (Polarons and electron-phonon interactions)  
Corresponding Authors:  M Tiotsop     E-mail:  tmaurice29@yahoo.fr

Cite this article: 

M Tiotsop, A J Fotue, S C Kenfack, N Issofa, H Fotsin, L C Fai Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot 2016 Chin. Phys. B 25 048401

[1] Li W P, Yin J W, Yu Y F, Wang Z W and Xiao J L 2010 J. Low Temp Phys. 160 112
[2] Yu Y F, Li W P, Yin J W and Xiao J L 2011 Int. J. Theor. Phys. 50 3322
[3] Wen Y J, Xiao J L, Yu Y F and Wang Z W 2009 Chin. Phys. B 18 446
[4] Sun J K, Li H J and Xiao J L 2009 Physica B 404 1961
[5] Nielsen M A and Chang I L 2000 Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] D'Amico I 2006 Microelectron. J. 37 1440
[7] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[8] Hawrylak P and Korkusinski M 2005 Solid State Commun. 136 508
[9] Sarma S D, Sousa R D, Hu X D and Koiller B 2005 Solid State Commun. 133 737
[10] Yu Y F, Li W P, Yin J W and Xiao J L 2011 Int. J. Theor. Phys. 50 3322
[11] Zhores I A and Leo Esaki L 2002 SPIE Proc. 5023
[12] Sun Z, Swart I, Delerue C, Vanmaekelbergh D and Liljeroth P 2009 Phys. Rev. Lett. 102 196401
[13] Rozhkov A V and Franco Nori F 2010 Phys. Rev. B 81 155401
[14] Seo M, Choi H K, Lee S Y, Kim N, Chung Y, Sim H S, Umansky V and Mahalu 2013 Phys. Rev. Lett. 110 046803
[15] Feng L Q, Li J Q and Xiao J L 2015 Mod. Phys. Lett. B 29 1450261
[16] Sun Y, Ding Z H and Xiao J L 2014 J. At. Mol. Sci. 5 263
[17] Xiao J L 2014 J. Phys. Soc. Jpn. 83 034004
[18] Barnes J P and Warren W S 1999 Phys. Rev. A 60 4363
[19] Kandemir B S and Cetin A 2005 J. Phys.: Condens. Matter 17 667
[20] Xiao J L 2014 Superlattices and Microstructures 70 39
[21] Fotue A J, Kenfack S C, Nsangou I, Tiotsop M, Djemmo M P T, Wirngo A V, Fotsin H and Fai L C 2015 Am. J. Mod. Phys. 4 138
[22] Sun J K, Li H J and Xiao J L 2009 Mod. Phys. Lett. B 23 3273
[23] Fai L C, Tchoffo M, Diffo J T and Fouokeng G C 2014 Phys. Rev. Res. Int. 4 267
[24] Wang Z W, Li W P, Yin J W and Xiao J L 2008 Commun. Theor. Phys. 49 311
[25] Li Z X 2011 J. Low Temp. Phys. 165 36
[26] Li Z X 2012 Mod. Phys. Lett. B 26 1150015
[1] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[4] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[8] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[9] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[10] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[11] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[12] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[13] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[14] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!