Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046103    DOI: 10.1088/1674-1056/25/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation

Shuang Li(李爽), Ming Chen(陈明)
School of Physics, Shandong University, Jinan 250100, China
Abstract  A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ~500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication.
Keywords:  size-controlled Ag nano-structures      pulsed laser fragmentation  
Received:  20 October 2015      Revised:  10 December 2015      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575102, 11105085, 11275116, and 11375108) and the Fundamental Research Funds of Shandong University, China (Grant No. 2015JC007).
Corresponding Authors:  Ming Chen     E-mail:  chenming@sdu.edu.cn

Cite this article: 

Shuang Li(李爽), Ming Chen(陈明) Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation 2016 Chin. Phys. B 25 046103

[1] Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner R T, Popovski G F, Jarzab D, Szendrei K, Resel R, Korovyanko O, Loi M A, Paris O, Hesser G and Heiss W 2011 ACS Nano 5 3758
[2] Patel S A, Richards C I, Hsiang J C and Dickson R M 2008 J. Am. Chem. Soc. 130 11602
[3] Yeh H C, Sharma J, Han J J, Martinez J S and Werner J H 2010 Nano Lett. 10 3106
[4] Kamalianfar A, Halim S A, Naseri M G, Navasery M, Din F U, Zahedi J A M, Behzad K, Lim K P, Monghadam A L and Chen S K 2013 Chin. Phys. B 22 088103
[5] Lin C Y, Yu C J, Lin Y H and Tseng W L 2010 Anal. Chem. 82 6830
[6] Deng C Y, Zhang G L, Zou B, Shi H L, Liang Y J, Li Y C, Fu J X and Wang W Z 2013 Chin. Phys. B 22 106102
[7] Yang C J, Zhao H B, Wang P P, Li J, Tang P, Qu S C, Lin F and Zhu X 2014 Chin. Phys. B 23 117302
[8] Wang Y, Dong R X and Yan X L 2015 Acta Phys. Sin. 64 048402 (in Chinese)
[9] Luo N Q, Huang Z Y, Li L, Shao Y Z and Chen D H 2013 Chin. Phys. Lett. 30 038101
[10] Li S, Chen M and Liu X D 2014 Opt. Express 22 18707
[11] Kubiliute R, Maximova K A, Lajevardipour A, Yong J, Hartley J S, Mohsin A S M, Blandin P, Chon J W M, Sentis M, Stoddart P R, Kabashin A, Rotomskis R, Clayton A H A and Juodkazis S 2013 Int. J. Nanomed. 8 2601
[12] Yan Z J, Bao R Q, Huang Y, Caruso A N, Oadri S B, Dinu C Z and Chrisey D B 2010 J. Phys. Chem. C 114 3869
[13] Chen M, Liu X D, Liu Y H and Zhao M W 2012 J. Appl. Phys. 111 103108
[14] Yan Z J, Bao R Q and Chrisey D B 2010 Nanotechnology 21 145609
[15] Mafune F, Kohno J Y, Takeda Y and Kondow T 2000 J. Phys. Chem. B 104 9111
[16] Yan Z J, Bao R Q and Chrisey D B 2011 Langmuir 27 851
[17] Jeon J S and Yeh C S 1998 J. Chin. Chem. Soc. 45 721
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[3] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[4] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[5] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[6] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[7] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[8] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[9] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[10] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[11] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[12] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[13] Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy
Yi Wang(王一), Xiang Guo(郭祥), Jiemin Wei(魏节敏), Chen Yang(杨晨), Zijiang Luo(罗子江), Jihong Wang(王继红), Zhao Ding(丁召). Chin. Phys. B, 2020, 29(4): 046801.
[14] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[15] Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
Ye Zhang(张也), Huai-Hong Guo(郭怀红), Bao-Juan Dong(董宝娟), Zhen Zhu(朱震), Teng Yang(杨腾), Ji-Zhang Wang(王吉章), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2020, 29(3): 037305.
No Suggested Reading articles found!