Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 037801    DOI: 10.1088/1674-1056/25/3/037801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design of a multiband terahertz perfect absorber

Dan Hu(胡丹)1, Hong-yan Wang(王红燕)2, Zhen-jie Tang(汤振杰)1,Xi-wei Zhang(张希威)1, Lin Ju(鞠琳)1, Hua-ying Wang(王华英)3
1. College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China;
2. College of Media and Communications, Anyang Normal University, Anyang 455000, China;
3. College of Science, Hebei University of Engineering, Handan 056038, China
Abstract  A thin-flexible multiband terahertz metamaterial absorber (MA) has been investigated. Each unit cell of the MA consists of a simple metal structure, which includes the top metal resonator ring and the bottom metallic ground plane, separated by a thin-flexible dielectric spacer. Finite-difference time domain simulation indicates that this MA can achieve over 99% absorption at frequencies of 1.50 THz, 3.33 THz, and 5.40 THz by properly assembling the sandwiched structure. However, because of its asymmetric structure, the MA is polarization-sensitive and can tune the absorptivity of the second absorption peak by changing the incident polarization angle. The effect of the error of the structural parameters on the absorption efficiency is also carefully analyzed in detail to guide the fabrication. Moreover, the proposed MA exhibits high refractive-index sensing sensitivity, which has potential applications in multi-wavelength sensing in the terahertz region.
Keywords:  multiband      terahertz      electromagnetic resonance      metamaterial absorber  
Received:  10 September 2015      Revised:  07 November 2015      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504006), the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 15A140002), and the Science and Technology Planning Project of Henan Province, China (Grant No. 142300410366).
Corresponding Authors:  Dan Hu, Hua-ying Wang     E-mail:  tylzhd@163.com;pbxsyingzi@126.com

Cite this article: 

Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英) Design of a multiband terahertz perfect absorber 2016 Chin. Phys. B 25 037801

[1] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[2] Seddon N and Bearpark T 2003 Science 302 1537
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[5] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2014 Chin. Phys. B 23 17802
[6] Chen J F, Hu Z Y, Wang G D, Huang X T, Wang S M, Hu X W and Liu M H 2015 IEEE Trans. Antennas. Propag. 63 4367
[7] Hu D, Wang X K, Feng S F, Ye J S, Sun W F, Kan Q, Klar P J and Zhang Y 2013 Adv. Opt. Mater. 1 186
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Li L Y, Wang J, Du H L, Wang J F and Qu S B 2015 Chin. Phys. B 24 24215
[10] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[11] Dayal G and Ramakrishna S A 2012 Opt. Express 20 17503
[12] Cao T, Wei C W, Simpson R E, Zhang L and Cryan M J 2014 Sci. Rep. 4 3955
[13] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103(R)
[14] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 125104
[15] Grant J, Ma Y, Saha S, Lok L B, Khalid A and Cumming D R S 2011 Opt. Lett. 36 1524
[16] Mo M M, Wen Q Y, Chen Z, Yang Q H, Qiu D H, Li S, Jing Y L, Zhang H W 2014 Chin. Phys. B 23 47803
[17] Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L and Cui T J 2012 Appl. Phys. Lett. 101 154102
[18] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L and Chen Z Q 2013 Eur. Phys. J. B 86 304
[19] Cao S, Yu W X, Wang T S, Shen H H, Han X D, Xu W B and Zhang X M 2014 Opt. Mat. Express 4 1876
[20] Wang G D, Chen J F, Hu X W, Chen Z Q and Liu M H 2014 Prog. Electromag. Res. 145 175
[21] Chen J F, Huang X T, Zerihun G, Hu Z Y, Wang S M, Wang G D, Hu X W and Liu M H 2015 J. Electron. Mater. 44 4269
[22] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[23] Hendrickson J, Guo J P, Zhang B Y, Buchwald W and Soref R 2012 Opt. Lett. 37 371
[24] Hu C G, Liu L Y, Zhao Z Y, Chen X N and Luo X G 2009 Opt. Express 17 16745
[25] Zhu J F, Ma Z F, Sun W J, Ding F, He Q, Zhou L and Ma Y G 2014 Appl. Phys. Lett. 105 021102
[26] Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z G and Pan X C 2013 J. Phys. D: Appl. Phys. 46 195103
[27] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F and Zhai X 2014 IEEE Photon. Technol. Lett. 26 111
[28] Yin S, Chen J F, Xu W D, Jiang W, Yuan J, Yin G, Xie L J, Ying Y B and Ma Y G 2015 Appl. Phys. Lett. 107 073903
[29] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[30] Yahiaoui R, Guillet J P, Miollis F and Mounaix P 2013 Opt. Lett. 38 4988
[31] Tao H, Strikwerda A C, Fan K, Bingham C M, Padilla W J, Zhang X and Averitt R D 2008 J. Phys. D: Appl. Phys. 41 232004
[32] Chen C Y, Wu S C and Yen T J 2008 Appl. Phys. Lett. 93 034110
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!