Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 034202    DOI: 10.1088/1674-1056/25/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-power electro-optic switch technology based on novel transparent ceramic

Xue-Jiao Zhang(张学娇)1,2, Qing Ye(叶青)1, Rong-Hui Qu(瞿荣辉)1, Hai-wen Cai(蔡海文)1
1. Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems.
Keywords:  switch      electro-optic switch      laser damage      optoelectronic material  
Received:  21 April 2015      Revised:  22 December 2015      Accepted manuscript online: 
PACS:  42.25.Hz (Interference)  
  42.79.-e (Optical elements, devices, and systems)  
  42.70.Mp (Nonlinear optical crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).
Corresponding Authors:  Qing Ye     E-mail:  yeqing@siom.ac.cn

Cite this article: 

Xue-Jiao Zhang(张学娇), Qing Ye(叶青), Rong-Hui Qu(瞿荣辉), Hai-wen Cai(蔡海文) High-power electro-optic switch technology based on novel transparent ceramic 2016 Chin. Phys. B 25 034202

[1] Li R, Wang C, Su G Z, Zhang K, Tang L and Li C 2007 Science & Technology Review 25 58
[2] Anthony W Y, Michael A K, David J H, James B A and Sun X 2010 Proc. SPIE 7578 757802
[3] Wang Y H, Wang J F, Jiang Y E, Bao Y, Li X C and Lin Z Q 2008 Chin. Opt. Lett. 6 841
[4] http://www.photoptech.com/main/products_gx/Electro-Optic%20Crystals.php.
[5] Qiao L, Ye Q, Gan J L, Cai H W and Qu R H 2011 Opt. Commun. 284 3886
[6] Li K K 2002 US Patent Application 10/139857
[7] Kamzina L S, Ruan W, Li G, Zeng J and Ding A 2010 Magnetism and Ferroelectricity 52 2142
[8] Jiang H, Zou Y, Ming H, Zhang X and Chen M Y 2004 Proc. SPIE 5644 380
[9] Ye Q, Qiao L, Cai H W and Qu R H 2011 Opt. Lett. 36 2453
[10] Ye Q, Qiao L, Gan J L, Cai H W and Qu R H 2010 Opt. Lett. 35 4187
[11] Zhang X J, Ye Q, Cai H W and Qu R H 2013 Chin. J. Lasers 40 0708004 (in Chinese)
[12] Zhang X J, Ye Q, Cai H W and Qu R H 2014 Opt. Laser Tech. 57 5
[13] James A T 1998 Optical Phased Array Beam Deflection Using Lead Lanthanum Zirconate Titanate (Ph. D Dissertation) (San Diego: University of California)
[14] Max B and Emil W 2001 Principle of Optics (7th Edn.) (New York: World Publishing Corporation)
[15] Theocaris P S and Gdoutos E E 1979 Matrix Theory of Photoelasticity (Germany: Springer)
[16] Yan L, Wei C Y and Li D W 2012 Appl. Opt. 51 3243
[17] Louchev O A, Hatano H, Wada S and Kitamura K 2013 Appl. Phys. Lett. 103 091114
[18] Sato H and Toda K 1977 Appl. Opt. 16 1280
[19] Winker D, Vaughan M and Hunt B 2006 Proc. SPIE 6409 640902
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[5] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[6] Switchable and tunable triple-channel bandpass filter
Ming-En Tian(田明恩), Zhi-He Long(龙之河), Li-Jun Feng(冯丽君), Lei-Lei He(贺磊磊), and Tian-Liang Zhang(张天良). Chin. Phys. B, 2022, 31(7): 078401.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[9] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[12] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[13] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[14] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
[15] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
No Suggested Reading articles found!