Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 028101    DOI: 10.1088/1674-1056/25/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of Ni doping on the structural properties and collapse of magnetic ordering in NdFe1-xNixO3 (0.1≤x≤ 0.7) orthoferrites

I. Ahmad1,2, M. J. Akhtar2, M. Siddique2
1. Department of Metallurgy and Materials Engineering, PIEAS, Islamabad, Pakistan;
2. Physics Division, PINSTECH, P. O. Nilore, Islamabad, Pakistan
Abstract  NdFe1-xNixO3 (0.1≤x≤ 0.7) orthoferrites are synthesized by solid state reaction method, and the structural properties of these materials are investigated by employing x-ray diffraction (XRD), scanning electron microscopy (SEM) and Mössbauer spectroscopy. The orthorhombic structure is observed in all systems; however, with the increase in Ni doping, the increase in tolerance factor and the decrease in the cell volume are observed. Orthorhombic distortion decreases with Ni content increasing up to 50%, while above 50% Ni doping it increases. SEM examination indicates the increases in grain size and intermixing of grains with increase in Ni concentration. Comparison between bulk and theoretical densities shows that in each of all samples porosity is less than 2%. Mössbauer spectroscopic investigations are performed to explain local structure, Fe oxidation states and collapse of the magnetic ordering. In these samples the Fe oxidation state remains +3 and there is no considerable increase in hole states observed; however due to mismatch of the ionic radii between Fe3+ and Ni3+, octahedral distortions, sagging and distribution of hyperfine parameters increase with increase in Ni concentration. The major factors behind the collapse of magnetic ordering in the Ni-doped systems are the weakening of the super-exchange interactions, decrease in the Neel temperature, increase in spin-spin relaxation frequency and high spin to low spin transition.
Keywords:  ceramic      crystal structure      electron microscopy      Mössbauer spectroscopy  
Received:  11 August 2015      Revised:  23 September 2015      Accepted manuscript online: 
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  61.50.-f (Structure of bulk crystals)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  33.45.+x (M?ssbauer spectra)  
Corresponding Authors:  M. J. Akhtar     E-mail:  javedakhtar6@gmail.com

Cite this article: 

I. Ahmad, M. J. Akhtar, M. Siddique Effects of Ni doping on the structural properties and collapse of magnetic ordering in NdFe1-xNixO3 (0.1≤x≤ 0.7) orthoferrites 2016 Chin. Phys. B 25 028101

[1] Minh N Q 1993 J. Am. Ceram. Soc. 76 563
[2] Tokura Y 2003 Physics Today 56 50
[3] Hou X, Ji D H, Qi W H, Tang G D and Li Z Z 2015 Chin. Phys. B 24 057501
[4] Bashir A, Ikram M, Kumar R, Thakur P, Chae K, Choi W and Reddy V 2009 J. Phys.: Conden. Matter 21 325501
[5] Blasco J and García J 1994 J. Phys. Chem. Solids 55 843
[6] Blasco J and García J 1994 Solid State Commun. 91 381
[7] Tiwari A and Rajeev K P 1998 Solid State Commun. 109 119
[8] Ahmad I, Akhtar M J and Hasan M M 2014 Mater. Res. Bull. 60 474
[9] Ahmad I, Akhtar M J, Khan R T A and Hasan M M 2013 J. Appl. Phys. 114 034103
[10] Zaanen J, Sawatzky G A and Allen J W 1985 Phys. Rev. Lett. 55 418
[11] Park C Y, Azzarello F V and Jacobson A J 2006 J. Mater. Chem. 16 3624
[12] Guo M C, Liu W F, Wu P, Zhang H, Xu X L, Wang S Y and Rao G H 2015 Chin. Phys. Lett. 32 066101
[13] Naumovich E, Patrakeev M, Kharton V, Islam M. Yaremchenko A, Frade J and Marques F 2006 Solid State Ionics 177 457
[14] Choi J J, Lee J H, Park D S, Hahn B D, Yoon W H and Lin H T 2007 J. Am. Ceram. Soc. 90 1926
[15] Didosyan Y, Barash V, Bovarin N, Hauser H and Fulmek P 1997 Sens. Actuat. A: Phys. 59 56
[16] Mathur N, Burnell G, Isaac S, Jackson T, Teo B S, MacManus-Driscoll J, Cohen L, Evetts J and Blamire M 1997 Nature 387 266
[17] Sarma S D 2003 Nat. Mater. 2 292
[18] Carotta M C, Martinelli G, Sadaoka Y, Nunziante P and Traversa E 1998 Sens. Actuat. B: Chem. 48 270
[19] Zhu X, Wang J, Zhang Z, Zhu J, Zhou S, Liu Z and Ming N 2008 J. Am. Ceram. Soc. 91 2683
[20] Kumar Pradeep, Kashyap Subhash C, Sharma Vijay Kumar and Gupta H C 2015 Chin. Phys. B 24 098101
[21] Idrees M, Nadeem M and Hassan M 2010 J. Phys. D: Appl. Phys. 43 155401
[22] Feroz A Mir, Sharma S K and Ravi Kumar 2014 Chin. Phys. B 23 048101
[23] Idrees M, Nadeem M, Mehmood M, Atif M, Chae K H and Hassan M 2011 J. Phys. D: Appl. Phys. 44 105401
[24] Idrees M, Nadeem M and Siddique M 2013 Curr. Appl. Phys. 13 448
[25] Idrees M, Nadeem M, Shah M and Shin T 2011 J. Phys. D: Appl. Phys. 44 455303
[26] Makhdoomi A B, Ikram M and Kumar R 2010 J. Magn. Magn. Mater. 322 2581
[27] Rao C N R, Parkash O M and Ganguly P 1975 J. Solid State Chem. 15 186
[28] Bartolomé F and Bartolomé J 2005 Solid State Sci. 7 700
[29] Zhang R, Hu J, Han Z, Zhao M, Wu Z, Zhang Yand Qin H 2010 J. Rare Earths 28 591
[30] Lacorre P 1992 J. Solid State Chem. 97 495
[31] Tiwari A 1998 J. Alloys. Compd. 274 42
[32] Sł awiński W, Przeniosł o R, Sosnowska I and Suard E 2005 J. Phys.: Conden. Matter 17 4605
[33] Shannon R 1976 Acta Crystallogr. A 32 751
[34] Kostogloudis G C, Vasilakos N and Ftikos C 1997 J. Eur. Ceram. Soc. 17 1513
[35] Ahmad I, Akhtar M J, Younas M, Siddique M and Hasan M M 2012 J. Appl. Phys. 112 074105
[36] Ahmad I, Akhtar M. J, Siddique M, Iqbal M and Hasan M M 2013 Ceram. Int. 39 8901
[37] Norman A, Morris M and Deeney F 1999 J. Mater. Proc. Tech. 92 118
[38] Makhdoomi A B, Ikram M and Kumar R 2010 J. Magn. Magn. Mater. 322 2581
[39] Marzec J 2007 J. Power Sources 173 671
[40] Kharton V V, Kovalevsky A V, Patrakeev M V, Tsipis E V, Viskup A P, Kolotygin V A, Yaremchenko A A, Shaula A L, Kiselev E A and Waerenborgh J C 2008 Chem. Mater. 20 6457
[41] Asai K and Sekizawa H 1980 J. Phys. Soc. Jpn. 49 90
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[7] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[8] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[9] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[10] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[11] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[12] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[13] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[14] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[15] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
No Suggested Reading articles found!