Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024305    DOI: 10.1088/1674-1056/25/2/024305
Special Issue: Virtual Special Topic — Acoustics
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

Bo Hu(胡博)1,2, Jie Shi(时洁)1,2, Sheng-Guo Shi(时胜国)1,2, Yu Sun(孙玉)1,2, Zhong-Rui Zhu(朱中锐)1,2
1. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
2. Science and Technology on Underwater Acoustic Laboratory, Harbin Engineering University, Harbin 150001, China
Abstract  We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise.
Keywords:  asymmetric transmission      impedance      gradient  
Received:  18 June 2015      Revised:  13 August 2015      Accepted manuscript online: 
PACS:  43.30.+m (Underwater sound)  
  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Ky (Structures and materials for absorbing sound in water; propagation in fluid-filled permeable material)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).
Corresponding Authors:  Jie Shi     E-mail:  shijie@hrbeu.edu.cn

Cite this article: 

Bo Hu(胡博), Jie Shi(时洁), Sheng-Guo Shi(时胜国), Yu Sun(孙玉), Zhong-Rui Zhu(朱中锐) Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance 2016 Chin. Phys. B 25 024305

[1] Takeda H and John S 2008 Phys. Rev. 93 023804
[2] Yu Z, Wang Z and Fan S 2007 Appl. Phys. Lett. 90 121133
[3] Li B W and Wang J 2004 Phys. Rev. Lett. 93 184301
[4] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[5] Liang B, Yuan B and Cheng J C 2009 Phys. Rev. Lett. 103 104301
[6] Liang B, Guo X S, Tu J, Zhang D and Cheng J C 2010 Nat. Mater. 9 989
[7] Gu Z M, Liang B and Cheng J C 2013 Chin. Phys. B 22 014303
[8] Zhu X F, Zou X Y, Liang B and Cheng J C 2010 J. Appl. Phys. 108 124909
[9] Yuan B, Liang B, Tao J C, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 043503
[10] Li R Q, Liang B, Li Y, Kan W W, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 263502
[11] Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
[12] Lin S C S and Huang T J 2009 J. Appl. Phys. 106 053529
[13] Lin S C S, Tittmann B R and Huang T J 2012 J. Appl. Phys. 111 123510
[14] Lin S C S, Huang T J, Sun J H and Wu T T 2009 Phys. Rev. B 79 094302
[15] Liu B S and Lei J Y 1993 Underwater Acoustic Theory (Harbin: Harbin Engineering University Press) p. 113 (in Chinese)
[16] Pedersen C P, Tretiak O and He P 1982 J. Acoust. Soc. Am. 72 327
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[3] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[6] Biophysical model for high-throughput tumor and epithelial cell co-culture in complex biochemical microenvironments
Guoqiang Li(李国强), Yanping Liu(刘艳平), Jingru Yao(姚静如), Kena Song(宋克纳), Gao Wang(王高), Lianjie Zhou(周连杰), Guo Chen(陈果), and Liyu Liu(刘雳宇). Chin. Phys. B, 2022, 31(2): 028703.
[7] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[8] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[9] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[10] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[11] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[12] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[13] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[14] Complex coordinate rotation method based on gradient optimization
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(2): 023101.
[15] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
No Suggested Reading articles found!