Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 016402    DOI: 10.1088/1674-1056/25/1/016402
Special Issue: TOPICAL REVIEW — 8th IUPAP International Conference on Biological Physics
TOPICAL REVIEW—8th IUPAP International Conference on Biological Physics Prev   Next  

Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

Zheng Wang(王铮) and Bao-Hui Li(李宝会)
The MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
Abstract  Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress.
Keywords:  grafted AB diblock copolymers      grafted ABA triblock copolymers      self-assembly      block copolymer brushes  
Received:  01 July 2015      Revised:  16 August 2015      Accepted manuscript online: 
PACS:  64.75.Va (Phase separation and segregation in polymer blends/polymeric solutions)  
  64.75.Yz (Self-assembly)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.
Corresponding Authors:  Bao-Hui Li     E-mail:  baohui@nankai.edu.cn

Cite this article: 

Zheng Wang(王铮) and Bao-Hui Li(李宝会) Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations 2016 Chin. Phys. B 25 016402

[1] Pincus P 1991 Macromolecules 24 2912
[2] Mansky P, Liu Y, Huang E, Russell T P and Hawker C 1997 Science 275 1458
[3] Galaev I Y and Mattiasson B 1999 Trends Biotechnol. 17 335
[4] Leger L, Raphael E and Hervet H 1999 Adv. Polym. Sci. 138 185
[5] Bates F S and Fredrickson G H 1999 Phys. Today 52 32
[6] Collier J H and Messersmith P B 2001 Annu. Rev. Mater. Res. 31 237
[7] Savic M R, Luo L, Eisenberg A and Maysinger D 2003 Science 300 615
[8] Zvelindovsky A V 2007 Nanostruct. Soft Matter (New York: Springer)
[9] Hamley I W 2003 Nanotechnology 14 39
[10] Park C, Yoon J and Thomas E L 2003 Polymer 44 6725
[11] Urbas A, Sharp R, Fink Y, Thomas E L, Xenidou M and Fetters L J 2000 Adv. Mater. 12 812
[12] Wan Y and Zhao D Y 2007 Chem. Rev. 107 2821
[13] Warren S C, Messina L C, Slaugther L S, Kamperman M, Zhou Q, Gruner S M, DiSalvo F and Wiesner U 2008 Science 320 1748
[14] Zhao B and Brittain W J 1999 J. Am. Chem. Soc. 121 3557
[15] Lupitskyy R, Roiter Y, Tsitsilianis C and Minko S 2005 Langmuir 21 8591
[16] Xu C, Wu T, Drain C M, Batteas J D, Fasolka M J and Beers K L 2006 Macromolecules 39 3359
[17] Zhou F and Huck W T S 2006 Phys. Chem. Chem. Phys. 8 3815
[18] Gao X, Zhu S P, Sheardown H and Brash J L 2010 Polymer 51 1771
[19] Luzinov I, Minko S and Tsukruk V V 2004 Prog. Polym. Sci. 29 635
[20] Minko S 2006 Polym. Rev. 46 397
[21] Stuart M A C, Huck W T S, Genzer J, Mueller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, UrbanM, Winnik F, Zauscher S, Luzinov I and Minko S 2010 Nat. Mater. 9 101
[22] Zhao B and Brittain W J 2000 Prog. Polym. Sci. 25 677
[23] Chen T, Ferris R, Zhang J M, Ducker R and Zauscher S 2010 Prog. Polym. Sci. 35 94
[24] Ayres N 2010 Polym. Chem. 1 769
[25] Craighead H G 2000 Science 290 1532
[26] Jacobs H O, Tao A R, Scwartz A, Gracias D H and Whitesides G M 2002 Science 296 323
[27] Nath N and Chilkoti A 2002 Adv. Mater. 14 1243
[28] Prokhorova S A, Kopyshev A, Ramakrishnan A, Zhang H and Rühe J 2003 Nanotechnology 14 1098
[29] Santer S and Rühe J 2004 Polymer 45 8279
[30] Matsen M W and Griffiths G H 2009 Eur. Phys. J. E. 29 219
[31] Zhao B and Zhu L 2009 Macromolecules 42 9369
[32] Chen T, Amin I and Jordan R 2012 Chem. Soc. Rev. 41 3280
[33] Azzaroni O 2012 J. Polym. Sci., Part A: Polym. Chem. 50 3225
[34] Binder K and Milchev A 2012 J. Polym. Sci., Part B: Polym. Phys. 50 1515
[35] Welch M E and Ober C K 2013 J. Polym. Sci., Part B: Polym. Phys. 51 1457
[36] Chen C, Tang P and Qiu F 2014 J. Polym. Sci., Part B: Polym. Phys. 52 1583
[37] Brittain W J and Minko S 2007 J. Polym. Sci., Part A: Polym. Chem. 45 3505
[38] Xia F, Feng L, Wang S, Sun T, Song W, Jiang W and Jiang L 2006 Adv. Mater. 18 432
[39] Zhao B, Brittain W J, Zhou W and Cheng S Z D 2000 J. Am. Chem. Soc. 122 2407
[40] Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K J, Motornov M, Usov D, Tokarev I and Stamm M 2002 Langmuir 18 289
[41] Lemieux M, Usov D, Minko S, Stamm M, Shulha H and Tsukruk V V 2003 Macromolecules 36 7244
[42] LeMieux M C, Julthongpiput D, Bergman K N, Cuong P D, Ahn H S, Lin Y H and Tsukruk V V 2004 Langmuir 20 10046
[43] Minko S, Müller M, Usov D, Scholl A, Froeck C and Stamm M 2002 Phys. Rev. Lett. 88 035502
[44] Müller M 2002 Phys. Rev. E 65 030802
[45] O'Driscoll B M D, Griffiths G H, Matsen M W, Perrier S, Ladmiral V and Hamley I W 2010 Macromolecules 43 8177
[46] Zhao B, Brittain W J, Zhou W and Cheng S Z D 2000 Macromolecules 33 8821
[47] Boyes S G, Granville A M, Baum M, Akgun B, Mirous B K and Brittain W J 2004 Surf. Sci. 570 1
[48] Tomlinson M R and Genzer J 2005 Langmuir 21 11552
[49] Tomlinson M R and Genzer J 2008 Polymer 49 4837
[50] Zhulina E B, Singh C and Balazs A C 1996 Macromolecules 29 6338
[51] Zhulina E, Singh C and Balazs A C 1996 Macromolecules 29 8254
[52] Balazs A C, Singh C, Zhulina E, Chern S S, Lyatskaya Y and Pickett G 1997 Prog. Surf. Sci. 55 181
[53] Yin Y, Sun P, Li B, Chen T, Jin Q, Ding D and Shi A C 2007 Macromolecules 40 5161
[54] Kong B, Lee J K and Choi I S 2007 Langmuir 23 6761
[55] Gao X, Feng W, Zhu S P, Sheardown H and Brash J L 2008 Langmuir 24 8303
[56] O'Driscoll B M D, Griffiths G H, Matsen M W and Hamley I W 2011 Macromolecules 44 8527
[57] Yu Q, Zhang Y, Chen H, Zhou F, Wu Z, Huang H and Brash J L 2010 Langmuir 26 8582
[58] Jalili K, Abbasi F and Milchev A 2013 Macromolecules 46 5260
[59] Ferreira P G and Leibler L 1996 J. Chem. Phys. 105 9362
[60] Meng D and Wang Q 2009 J. Chem. Phys. 130 134904
[61] Gong K, Marshall B D and Chapman W G 2012 J. Chem. Phys. 137 154904
[62] Wang J and Müller M 2009 Macromolecules 42 2251
[63] Wang J and Müller M 2010 Langmuir 26 1291
[64] Guskova O A and Seidel C 2011 Macromolecules 44 671
[65] Romiszowski P and Sikorski A 2007 J. Phys.: Condens. Matter 19 205137
[66] Rudov A A, Khalatur P G and Potemkin I I 2012 Macromolecules 45 4870
[67] Jiang R, Li B, Wang Z, Yin Y and Shi A C 2012 Macromolecules 45 4920
[68] Julthongpiput D, Lin Y H, Teng J, Zubarev E R and Tsukruk V V 2003 Langmuir 19 7832
[69] Zhao B and He T 2003 Macromolecules 36 8599
[70] Julthongpiput D, Lin Y H, Teng J, Zubarev E R and Tsukruk V V 2003 J. Am. Chem. Soc. 125 15912
[71] Zhao B, Haasch R T and MacLaren S 2004 J. Am. Chem. Soc. 126 6124
[72] Lin Y H, Teng J, Zubarev E R, Shulha H and Tsukruk V V 2005 Nano. Lett. 5 491
[73] LeMieux M C, Lin Y H, Cuong P D, Ahn H S, Zubarev E R and Tsukruk V V 2005 Adv. Funct. Mater. 15 1529
[74] Wang Y, Zheng J X, Brittain W J and Cheng S Z D 2006 J. Polym. Sci., Part A: Polym. Chem. 44 5608
[75] Wang Z L, Xu J T, Du B Y and Fan Z Q 2012 J. Colloid Interface Sci. 384 29
[76] Tonhauser C, Golriz A A, Moers C, Klein R, Butt H J and Frey H 2012 Adv. Mater. 24 5559
[77] Zhulina E and Balazs A C 1996 Macromolecules 29 2667
[78] Santer S, Kopyshev A, Donges J, Rühe J, Jiang X G, Zhao B and Mmüller 2007 Langmuir 23 279
[79] Yin Y, Jiang R, Li B, Jin Q, Ding D and Shi A C 2008 J. Chem. Phys. 129 154903
[80] Gao H M, Liu H, Lu Z Y, Sun Z Y and An L J 2013 J. Chem. Phys. 138 224905
[81] Boyes S G, Brittain W J, Weng X and Cheng S Z D 2002 Macromolecules 35 4960
[82] Huang W X, Kim J B, Bruening M L and Baker G L 2003 Nanotechnology 14 1075
[83] Rakhmatullina E, Mantion A, Bürgi T, Malinova V and Meier W 2009 J. Polym. Sci., Part A: Polym. Chem. 47 1
[84] Xu J, Yin Y, Wang Z, Jiang R, Li B and Shi A C 2013 J. Chem. Phys. 138 114905
[85] Xu J, Jiang R, Yin Y, Wang Z and Li B 2013 Acta Polym. Sin. 10 1277
[86] Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K and Mortensen K 1995 Macromolecules 28 8796
[87] Matsen M W and Schick M 1994 Phys. Rev. Lett. 72 2660
[88] Matsen M W and Bates F S 1996 Macromolecules 29 1091
[89] Matsen M W 2002 J. Phys.: Condens. Matter 14 R21
[90] Mayes A M and Olvera de la Cruz M 1991 J. Chem. Phys. 95 4670
[91] Matsushita Y, Nomura M, Watanabe J, Mogi Y, Noda I and Imai M 1995 Macromolecules 28 6007
[1] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[5] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[6] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[7] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[8] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[9] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[10] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[11] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[12] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[13] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[14] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[15] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
No Suggested Reading articles found!