Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010506    DOI: 10.1088/1674-1056/25/1/010506
GENERAL Prev   Next  

The Wronskian technique for nonlinear evolution equations

Jian-Jun Cheng(成建军)1 and Hong-Qing Zhang(张鸿庆)2
1. School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China;
2. Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China
Abstract  The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.
Keywords:  nonlinear evolution equations      Wronskian determinant      Young diagram  
Received:  07 March 2015      Revised:  29 August 2015      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51379033, 51522902, 51579040, J1103110, and 11201048).
Corresponding Authors:  Jian-Jun Cheng     E-mail:  chengjianjun0355@126.com

Cite this article: 

Jian-Jun Cheng(成建军) and Hong-Qing Zhang(张鸿庆) The Wronskian technique for nonlinear evolution equations 2016 Chin. Phys. B 25 010506

[1] Colin T 1993 Phys. D 64 215
[2] Hong W P 2007 Phys. Lett. A 361 520
[3] Sun W R, Tian B, Jiang Y and Zhen H L 2014 Annals of Physics 343 215
[4] Ablowitz M J and Segur H 1981 SIAM, Philadelphia
[5] Rogers C and Shadwick W R 1982 Bäcklund$ Transformation and Their Application (New York: Academic Press)
[6] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[7] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[8] Hirota R 1971 Phys. Rev. Lett. 27 1192
[9] Jarmo H 1987 J. Math. Phys. 28 1732
[10] Jarmo H 1987 J. Math. Phys. 28 2094
[11] Jarmo H 1987 J. Math. Phys. 28 2586
[12] Jarmo H 1988 J. Math. Phys. 29 628
[13] Hu X B, Wu Y T and Geng X G 1999 J. Math. Phys. 40 4180
[14] Shen H F and Tu M H 2011 J. Math. Phys. 52 032704
[15] Chiu S C and Ladik J F 1977 J. Math. Phys. 18 690
[16] Case K M and Chiu S C 1977 J. Math. Phys. 18 2044
[17] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[18] Hirota R and Tang 1986 J. Phys. Soc. Jpn. 55 2137
[19] Ma W X 2002 Phys. Lett. A 301 35
[20] Gulmaro C C 2004 J. Math. Phys. 45 4282
[21] Ma W X 2005 Nonl. Anal. 63 2461
[22] Yan Z 2007 Chaos Solitons Fract. 33 951
[23] Sun Y and Tam H 2008 J. Math. Anal. Appl. 343 810
[24] Zhang D J, Zhao S L, Sun Y Y and Zhou J 2014 Reviews in Mathematical Physics 26 1430006
[25] Xu T and Tian B 2010 J. Math. Phys. 51 033504
[26] Wu J P 2011 Chin. Phys. Lett. 28 050501
[27] Pierre G 2013 J. Math. Phys. 54 013504
[28] Sato M 1981 Publication of RIMS, Kyoto Univ. 439 30
[29] Ohta Y, Satsuma J, Takahashi D and Tokihiro T 1988 Prog. Theor. Phys. Suppl. 94 210
[30] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Doklady. 15 539
[31] Jimbo M and Miwa T 1983 Res. I. Math. Sci. 19: 943
[32] Hirota R 1989 J. Phys. Soc. Jpn. 58 2285
[33] Date E, Jimbo M, Kashiwara M and Miwa T 1981 Phys. D 82 343
[34] Tokunaga T, Kadomatsu H and Fujiwara H 1981 J. Phys. Soc. Jpn 50 3183
[35] Chen D Y, Xin H W and Zhang D J 2003 Chaos Soliton. Fract. 15 761
[36] Tang Y N, Ma W X and Xu W 2012 Chin. Phys. B 21 070212
[37] Cheng J J, Wang Z and Zhang H Q 2014 J. Nonl. Math. Phys. 21 17
[38] Zayed E M E and Gepreel K A 2008 J. Math. Phys. 50 013502
[39] Bekir A and Boz A 2008 Phys. Lett. A 372 1619
[1] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[4] Wronskian and Grammian solutions for (3+1)-dimensional Jimbo–Miwa equation
Su Peng-Peng (苏朋朋), Tang Ya-Ning (唐亚宁), Chen Yan-Na (陈妍呐). Chin. Phys. B, 2012, 21(12): 120509.
[5] Second-order nonlinear differential operators possessing invariant subspaces of submaximal dimension
Zhu Chun-Rong(朱春蓉). Chin. Phys. B, 2011, 20(1): 010201.
[6] A new expansion method of first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term and its application to mBBM model
Pan Jun-Ting(潘军廷) and Gong Lun-Xun(龚伦训). Chin. Phys. B, 2008, 17(2): 399-402.
No Suggested Reading articles found!