Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010205    DOI: 10.1088/1674-1056/25/1/010205
GENERAL Prev   Next  

Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients

Cui-Cui Liao(廖翠萃)1, Jin-Chao Cui(崔金超)1, Jiu-Zhen Liang(梁久祯)2, Xiao-Hua Ding(丁效华)3
1. Department of Information and Computing Science, College of Science, Jiangnan University, Wuxi 214122, China;
2. College of Internet of Things, Jiangnan University, Wuxi 214122, China;
3. Department of Mathematics, Harbin Institute of Technology. Harbin 150001, China
Abstract  In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross-Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space.
Keywords:  multi-symplectic form formulas      variational integrators      conservation laws      nonlinear Schrödinger equations  
Received:  08 July 2015      Revised:  18 September 2015      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  47.10.Df (Hamiltonian formulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11401259) and the Fundamental Research Funds for the Central Universities, China (Grant No. JUSRR11407).
Corresponding Authors:  Cui-Cui Liao     E-mail:  cliao@jiangnan.edu.cn

Cite this article: 

Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华) Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients 2016 Chin. Phys. B 25 010205

[1] Saleh B and Teich M 1991 Fundamentals of Fotonics (New York: Wiley-Interscience)
[2] Stenflo L and Yu M 1997 IEEE Trans. Plasma. Sci. 25 1155
[3] Lu J 2004 Chin. Phys. B. 13 0811
[4] Bao W, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
[5] Bao W and Cai Y 2013 Kinet. Relat. Mod. 6 1
[6] Liang X, Khaliq A and Sheng Q 2014 Appl. Math. Comput. 235 235
[7] Sheng Q, Khaliq A and Al-Said E 2001 J. Comput. Phys. 166 400
[8] Cai W and Wang Y 2014 Chin. Phys. B 23 030204
[9] Cai J, Yang B and Liang H 2013 Chin. Phys. B 22 030209
[10] Cai J, Wang J and Wang Y 2015 Chin. Phys. B 24 050205
[11] Cai J and Wang Y 2013 Chin. Phys. B 22 060207
[12] Cai J, Qin Z and Bai C 2013 Chin. Phys. Lett. 30 070202
[13] Cai W, Wang Y and Song Y 2014 Chin. Phys. Lett. 31 040201
[14] Wang Y, Lv Z and Zhang L 2014 Chin. Phys. B 23 120203
[15] Lappas D and L'Huillier A 1998 Phys. Rev. A 58 4140
[16] Serkin V and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[17] Zhu H, Chen Y, Song S and Hu H 2011 Appl. Numer. Math. 61 308
[18] Dehghan M and Taleei A 2010 CP Communications 181 43
[19] Qian X, Chen Y and Song S 2014 Commun. Comput. Phys. 15 692
[20] Bridges T and Reich S 2001 Phys. Lett. A 284 184
[21] Bridges T and Reich S 2006 J. Phys. A: Math. Gen. 39 5287
[22] Reich S 2000 J. Comput. Phys. 157 473
[23] Marsden J, Patrick G and Shkoller S 1998 Commun. Math. Phys. 199 351
[24] Marsden J and West M 2001 Acta. Numerica 10 357
[25] Hairer E, Lubich C and Wanner G 2006 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Berlin: Springer)
[26] Hong J, Liu Y, Munthe-Kaas H and Zanna A 2006 Appl. Numer. Math. 56 814
[27] Bai D and Zhang L 2011 Int. J. Comput. Math. 88 1714
[28] Ran M and Zhang C 2015 Int. J. Comput. Math.
[29] Chen S, Li Z, Wang Y and Chien C 2013 Int. J. Comput. Math. 90 651
[30] Yuan Y, Sun C and Zhao F 2015 Acta Phys. Sin. 64 034202 (in Chinese)
[31] Zhou S and Cheng X 2010 Math. Comput. Simulat. 80 2362
[32] Sheng Q and Sun H 2014 Comput. Math. Appl. 68 1341
[33] Deng D 2014 Int. J. Comput. Math. 91 1755
[34] Hong J and Liu Y 2003 Appl. Math. Lett. 16 759
[35] Chen J, Qin M and Tang Y 2002 Comput. Math. Appl. 43 1095
[36] Chen J and Qin M 2001 ETNA 12 193
[37] Leok M and Zhang J 2011 IMA J. Numer. Anal. 31 1497
[38] Liu S, Liu C and Guo Y 2011 Chin. Phys. B 20 034501
[39] Chen J and Qin M 2002 Numer. Meth. Part. D E 18 523
[40] Chen J 2005 Appl. Math. Comput. 170 1394
[41] Vankerschaver J, Liao C and Leok M 2013 J. Math. Phys. 54 082901
[42] Sulem C and Sulem P 1999 The Nonlinear Schrödinger Equation: Self-fousing and Wave Collapse (New York: Springer)
[43] Sacchetti A 2004 J. Evol. Equ. 4 345
[44] Zhou S and Cheng X 2011 Int. J. Comput. Math. 88 795
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[3] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[4] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[7] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[8] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
[9] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[10] Noether symmetry and conserved quantities of the analytical dynamics of a Cosserat thin elastic rod
Wang Peng (王鹏), Xue Yun (薛纭), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2013, 22(10): 104503.
[11] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[12] Mei symmetry and conserved quantities in Kirchhoff thin elastic rod statics
Wang Peng(王鹏), Xue Yun(薛纭), and Liu Yu-Lu(刘宇陆) . Chin. Phys. B, 2012, 21(7): 070203.
[13] An extension of the modified Sawada–Kotera equation and conservation laws
He Guo-Liang(何国亮) and Geng Xian-Guo(耿献国) . Chin. Phys. B, 2012, 21(7): 070205.
[14] Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities
Huang Ding-Jiang(黄定江), Zhou Shui-Geng(周水庚), and Yang Qin-Min(杨勤民). Chin. Phys. B, 2011, 20(7): 070202.
[15] A note on teleparallel Killing vector fields in Bianchi type VIII and IX space–times in teleparallel theory of gravitation
Ghulam Shabbir, Amjad Ali, and Suhail Khan. Chin. Phys. B, 2011, 20(7): 070401.
No Suggested Reading articles found!