Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127308    DOI: 10.1088/1674-1056/24/12/127308
SPECIAL TOPIC—8th IUPAP International Conference on Biological Physics Prev   Next  

Colloidally deposited nanoparticle wires for biophysical detection

Sophie C. Shena, Liu Wen-Tao (刘文韬)b, Diao Jia-Jie (刁佳杰)c
a University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
b College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA;
c Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Life Science, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules.
Keywords:  nanoparticle      biomolecule      electronic detection  
Received:  22 January 2015      Revised:  24 February 2015      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  78.67.Rb (Nanoporous materials)  
  87.80.-y (Biophysical techniques (research methods))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities through Xi'an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304).
Corresponding Authors:  Diao Jia-Jie     E-mail:  diaojj@mail.xjtu.edu.cn

Cite this article: 

Sophie C. Shen, Liu Wen-Tao (刘文韬), Diao Jia-Jie (刁佳杰) Colloidally deposited nanoparticle wires for biophysical detection 2015 Chin. Phys. B 24 127308

[1] Diao J J and Chen H 2006 J. Chem. Phys. 124 116103
[2] Prasad B L, Sorensen C M and Klabunde K J 2008 Chem. Soc. Rev. 37 1871
[3] Gao S, Zhao S L, Xu Z, Yang Y F, Liu Z M and Xie X Y 2014 Acta Phys. Sin. 63 157702 (in Chinese)
[4] Xu R, Jia G Y and Liu C L 2014 Acta Phys. Sin. 63 078501 (in Chinese)
[5] Duan F L and Wang Y 2014 Acta Phys. Sin. 63 136102 (in Chinese)
[6] Hu Y, Li J C, Shen M W and Shi X Y 2014 Chin. Phys. B 23 078704
[7] Singh N S, Singh S D and Meetei S D 2014 Chin. Phys. B 23 058104
[8] Monticone F and Alu A 2014 Chin. Phys. B 23 047809
[9] Diao J J, Chen G D, Xi C, Fan Z Y and Yuan J S 2003 Chin. Phys. 12 100
[10] Diao J J, Huang S and Reeves M E 2005 J. Chem. Phys. 122 146101
[11] Tao A R, Huang J and Yang P 2008 ACC Chem. Res. 41 1662
[12] Diao J J and Chen G D 2001 J. Phys. D: Appl. Phys. 34 L79
[13] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A A 2003 Nat. Mater. 2 229
[14] Wei Q H, Su K H, Durant S and Zhang X 2004 Nano Lett. 4 1067
[15] Barry C R, Lwin N Z, Zheng W and Jacobs H O 2003 Appl. Phys. Lett. 83 5527
[16] Cui Y, Bjork M T, Liddle J A, Sonnichsen C, Boussert B and Alivisatos A P 2004 Nano Lett. 4 1093
[17] Demers L M, Ginger D S, Park S J, Li Z, Chung S W and Mirkin C A 2002 Science 296 1836
[18] Yin Y D, Lu Y and Xia Y N 2001 J. Am. Chem. Soc. 123 771
[19] Hermanson K D, Lumsdon S O, Williams J P, Kaler E W and Velev O D 2001 Science 294 1082
[20] Velev O D and Kaler E W 1999 Langmuir 15 3693
[21] Dimitrov A S and Nagayama K 1996 Langmuir 12 1303
[22] Jiang P, Bertone J F, Hwang K S and Colvin V L 1999 Chem. Mater. 11 2132
[23] Gupta S, Alargova R G, Kilpatrick P K and Velev O D 2010 Langmuir 26 3441
[24] Istrate E and Sargent E H 2006 Rev. Mod. Phys. 78 455
[25] Zhang J, Li Y, Zhang X and Yang B 2010 Adv. Mater. 22 4249
[26] Diao J J, Qiu F S, Chen G D and Reeves M E 2003 J. Phys. D: Appl. Phys. 36 L25
[27] Chen Y, Luo G H, Diao J J, Chornoguz O, Reeves M and Vertes A 2007 J. Phys.: Conf. Ser. 59 548
[28] Duan X and Lieber C M 2013 Chem. Asian J. 8 2304
[29] Diao J, Cipriano D J, Zhao M, Zhang Y, Shah S, Padolina M S, Pfuetzner R A and Brunger A T 2013 J. Am. Chem. Soc. 135 15274
[30] Lai Y, Diao J, Cipriano D J, Zhang Y, Pfuetzner R A, Padolina M S and Brunger A T 2014 Elife 3 e03756
[31] Diao J, Zhao M, Zhang Y, Kyoung M and Brunger A T 2013 Bioessays 35 658
[32] Diao J, Yoon T Y, Su Z, Shin Y K and Ha T 2009 Langmuir 25 7177
[33] Cohen-Karni T and Lieber C M 2013 Pure Appl. Chem. 85 883
[34] Giraldo O, Durand J P, Ramanan H, Laubernds K, Suib S L, Tsapatsis M, Brock S L and Marquez M 2003 Angew. Chem. Int. Ed. 42 2905
[35] Diao J J, Hutchison J B, Luo G H and Reeves M E 2005 Appl. Phys. Lett. 87 103113
[36] Huang J X, Fan R, Connor S and Yang P D 2007 Angew. Chem. Int. Ed. 46 2414
[37] Huang J X, Tao A R, Connor S, He R R and Yang P D 2006 Nano Lett. 6 524
[38] Kakefuda Y, Narita K, Komeda T, Yoshimoto S and Hasegawa S 2008 Appl. Phys. Lett. 93 163103
[39] Olgun U 2010 ACS Appl. Mater. Interfaces 2 28
[40] Watanabe S, Inukai K, Mizuta S and Miyahara M T 2009 Langmuir 25 7287
[41] Watanabe S, Mino Y, Ichikawa Y and Miyahara M T 2012 Langmiur 28 12982
[42] Diao J J, Chen G D, Qiu F S and Yan G J 2004 Chin. Phys. 13 1927
[43] Diao J J, Hutchison J B, Luo G H and Reeves M E 2005 J. Chem. Phys. 122 184710
[44] Diao J J and Xia M G 2009 Colloids Surf. A 338 167
[45] Farcau C, Moreira H, Viallet B T, Grisolia J R M and Ressier L 2010 ACS Nano 4 7275
[46] Huang J X, Kim F, Tao A R, Connor S and Yang P D 2005 Nat. Mater. 4 896
[47] Diao J J and Cao Q 2011 AIP Advances 1 012115
[48] Mino Y, Watanabe S and Miyahara M T 2011 Langmuir 27 5290
[49] Garcia M A, de la Venta J, Crespo P, LLopis J, Penades S, Fernandez A and Hernando A 2005 Phys. Rev. B 72 241403
[50] Cui Y, Wei Q Q, Park H K and Lieber C M 2001 Science 293 1289
[51] Patolsky F, Zheng G F, Hayden O, Lakadamyali M, Zhuang X W and Lieber C M 2004 Proc. Natl. Acad. Sci. USA 101 14017
[52] Zhang Y, Terrill R H and Bohn P W 1998 J. Am. Chem. Soc. 120 9969
[53] Liu Z and Searson P C 2006 J. Phys. Chem. B 110 4318
[54] Shao L, Diao J J, Tang Z, Liu S, Shen S C, Rui X, Liu J, Yu D and Zhao Q 2014 Nanoscale 6 4089
[55] McFarland A D and van Duyne R P 2003 Nano Lett. 3 1057
[56] Willets K A and van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[57] Mullett W M, Lai E P C and Yeung J M 2000 Methods 22 77
[58] Campbell C T and Kim G 2007 Biomaterials 28 2380
[59] Wei H, Wang Z, Zhang J, House S, Gao Y G, Yang L, Robinson H, Tan L H, Xing H, Hou C, Robertson I M, Zuo J M and Lu Y 2011 Nat. Nanotech. 6 93
[60] Lacerda S H D, Park J J, Meuse C, Pristinski D, Becker M L, Karim A and Douglas J F 2010 ACS Nano 4 365
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[3] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[4] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[7] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[10] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[11] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[14] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[15] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
No Suggested Reading articles found!