Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127303    DOI: 10.1088/1674-1056/24/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape effects on the ground-state energy of a three-electronquantum dot

Z. D. Vatansevera b, S. Sakiroglua, ?. Sokmena
a Department of Physics, Faculty of Science, Dokuz Eylül University, ?zmir 35390, Turkey;
b Dokuz Eylül University, Graduate School of Natural & Applied Sciences, ?zmir 35390, Turkey
Abstract  

In this work we will theoretically study the ground-state electronic structure of three-electron polygonal quantum dots by means of the configuration interaction method. Transition from a weakly correlated regime to a strongly correlated regime is investigated for quantum dots with hexagonal, square, and triangular geometries. Our numerical results reveal that the ground-state spin and the charge density distribution of the system are sensitive to the shape of the quantum dot.

Keywords:  quantum dot      configuration interaction method      Wigner molecule  
Received:  29 June 2015      Revised:  07 August 2015      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Corresponding Authors:  Z. D. Vatansever     E-mail:  zeynep.demir@deu.edu.tr

Cite this article: 

Z. D. Vatansever, S. Sakiroglu, İ. Sokmen Shape effects on the ground-state energy of a three-electronquantum dot 2015 Chin. Phys. B 24 127303

[1] Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
[2] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701 and the references therein
[3] Austing D G, Sasaki S, Tarucha S, Reimann S M, Koskinen M and Manninen M 1999 Phys. Rev. B 60 11514
[4] Jo M, Mano T, Abbarchi M, Kuroda T, Sakuma Y and Sakoda K 2012 Cryst. Growth Des. 12 1411
[5] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283 and the references therein
[6] Steiner T D 2004 Semiconductor nanostr uctures for optoelectronic applications (Norwood: Artech House Inc.)
[7] Yannouleas C and Landman U 1999 Phys. Rev. Lett. 82 5325
[8] Reusch B, Häusler W and Grabert H 2001 Phys. Rev. B 63 113313
[9] Reimann S M, Koskinen M and Manninen M 2000 Phys. Rev. B 62 8108
[10] Ghosal A, Güçlü A D, Umrigar C J, Ullmo D and Baranger H U 2007 Phys. Rev. B 76 085341
[11] Egger R, Häusler W, Mak C H and Grabert H 1999 Phys. Rev. Lett. 82 3320
[12] Bryant G W 1987 Phys. Rev. Lett. 59 1140
[13] Creffield C E, Häusler W, Jefferson J H and Sarkar S 1999 Phys. Rev. B 59 10719
[14] Räsänen E, Saarikoski H, Puska M J and Nieminen R M 2003 Phys. Rev. B 67 035326
[15] Ishizuki M, Takemiya H, Okunishi T, Takeda K and Kusakabe K 2012 Phys. Rev. B 85 155316
[16] Akbar S and Lee I H 2001 Phys. Rev. B 63 165301
[17] Pujari B, Joshi K, Kanhere D G and Blundell S A 2007 Phys. Rev. B 76 085340
[18] Räsänen E, Saarikoski H, Stavrou V N, Harju A, Puska M J and Nieminen R M 2003 Phys. Rev. B 67 235307
[19] Zhu J-L, Hu S, Dai Z and Hu X 2005 Phys. Rev. B 72 075411
[20] Li Y, Yannouleas C and Landman U 2007 Phys. Rev. B 76 245310
[21] Szafran B, Peeters F M, Bednarek S and Adamowski J 2004 Phys. Rev. B 69 125344
[22] Mikhailov S A 2002 Phys. Rev. B 65 115312
[23] Xie W and Chen C 1999 Physica B 266 373
[24] Usukura J, Saiga Y and Hirashima D S 2005 J. Phys. Soc. Jpn. 74 1231
[25] Ezaki T, Mori N and Hamaguchi C 1997 Phys. Rev. B 56 6428
[26] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Stat. Sol. B 243 2465
[27] Helgaker T, Jørgensen P and Olsen J 2000 Molecular electronicstructure theory (Chichester: John Wiley and Sons)
[28] Pauncz R 1979 Spin eigenfunctions: Construction and use (New York: Plenum)
[29] Leouocq R B, Maschhoff K, Sorensen D C and Yang C 1997 ARPACK computer code available at http://www.caam.rice.edu/software/ARPACK/
[30] Reusch B and Egger R 2003 Europhys. Lett. 64 84
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!