Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126403    DOI: 10.1088/1674-1056/24/12/126403
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

Li Ying (李颖), Sun Min-Na (孙敏娜), Zhang Jin-Jun (张进军), Pan Jun-Xing (潘俊星), Guo Yu-Qi (郭宇琦), Wang Bao-Feng (王宝凤), Wu Hai-Shun (武海顺)
School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
Abstract  The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures.
Keywords:  self-assembly      irregular geometries      soft confinement      self-consistent field  
Received:  02 June 2015      Revised:  06 August 2015      Accepted manuscript online: 
PACS:  64.75.Gh (Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.))  
  64.75.Yz (Self-assembly)  
  64.70.km (Polymers)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
Corresponding Authors:  Zhang Jin-Jun     E-mail:  zhangjinjun@sxnu.edu.cn

Cite this article: 

Li Ying (李颖), Sun Min-Na (孙敏娜), Zhang Jin-Jun (张进军), Pan Jun-Xing (潘俊星), Guo Yu-Qi (郭宇琦), Wang Bao-Feng (王宝凤), Wu Hai-Shun (武海顺) Multiple patterns of diblock copolymer confined in irregular geometries with soft surface 2015 Chin. Phys. B 24 126403

[1] Park C, Yoon J and Thomas E L 2003 Polymer 44 6725
[2] Shi A C and Li B H 2013 Soft Matter 9 1398
[3] Bates F S and Fredrickson G H 1999 Physics Today 52 32
[4] Stewart-Sloan C R and Thomas E L 2011 Eur. Polym. J. 47 630
[5] Li S B, Qiu W J, Zhang L X and Liang H J 2012 J. Chem. Phys. 136 124906
[6] Wyman I, Njikang G and Liu G J 2011 Prog. Polym. Sci. 36 1152
[7] Tsarkova L, Knoll A, Krausch G and Magerle R 2006 Macromolecules 39 3608
[8] Ginzburg V V, Weinhold J D and Trefonas P 2015 J. Polym. Sci. Pol. Phys. 53 90
[9] Tang Q Y and Ma Y Q 2009 J. Phys. Chem. B 113 10117
[10] Liu M J, Li S B, Zhang L X and Wang X H 2010 Chin. Phys. B 19 028101
[11] Li S B, Zhang L X, Wang X H and Liang H J 2011 Chin. Phys. B 20 083601
[12] Li W H and Wickham R A 2006 Macromolecules 39 8492
[13] Sun M N, Zhang J J, Wang B F, Wu H S and Pan J X 2011 Phys. Rev. E 84 011802
[14] Pan J X, Zhang J J, Wang B F, Wu H S and Sun M N 2013 Chin. Phys. B 22 026401
[15] Zhang L C, Sun M N, Pan J J, Wang B F, Zhang J J and Wu H S 2013 Chin. Phys. B 22 096401
[16] Xu T, Hawker C J and Russell T P 2005 Macromolecule 38 2802
[17] Wang Q, Nealey P F and de Pablo J J 2001 Macromolecules 34 3458
[18] Wang Q, Nealey P F and de Pablo J J 2003 Macromolecules 36 1731
[19] Horvat A, Lyakhova K S, Sevink G J A, Zvelindovsky A V and Magerle R 2004 J. Chem. Phys. 120 1117
[20] Knoll A, Lyakhova K S, Horvat A, Krausch G, Sevink G J A and Zvelindovsky A V 2004 Nat. Mater. 3 886
[21] Lyakhova K S, Sevink G J A, Zvelindovsky A V, Horvat A and Magerle R 2004 J. Chem. Phys. 120 1127
[22] Ludwigs S, Krausch G, Magerle R, Zvelindovsky A V and Sevink G J A 2005 Macromolecules 38 1859
[23] Tsarkova L, Sevink G J A and Krausch G 2010 Adv. Polym. Sci. 227 33
[24] Koneripalli N, Singh N, Levicky R and Bates F S 1995 Macromolecules 28 2897
[25] Shull K R 1992 Macromolecules 25 2122
[26] Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J and Russell T P 2004 Macromolecules 37 5660
[27] Li W H, Wickham R A and Garbary R A 2006 Macromolecules 39 806
[28] Chen P and Liang H J 2007 Macromolecules 40 7329
[29] He X H, Song M, Liang H J and Pan C Y 2001 J. Chem. Phys. 114 10510
[30] Chen P, He X H and Liang H J 2006 J. Chem. Phys. 124 104906
[31] Chen P and Liang H J 2008 Macromolecules 41 8938
[32] Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H and Shi A C 2007 J. Chem. Phys. 126 204903
[33] Yu B, Deng J H, Wang Z, Li B H and Shi A C 2015 Chin. Phys. B 24 046402
[34] Tang Q Y and Ma Y Q 2010 Soft Matter 6 4460
[35] Trombly D M, Pryamitsyn V and Ganesan V 2011 J. Chem. Phys. 134 154903
[36] Mansky P and Russell T 1997 Macromolecules 30 6810
[37] Suh H S, Kang H M, Nealey P F and Char K 2010 Macromolucules 43 4744
[38] Smith A P, Sehgal A, Douglas K F, Karim A and Amis E J 2003 Macromol. Rapid Commun. 24 131
[39] Huang E, Russell T P, Harrison C and Chaikin P M 1998 Macromolecules 31 7641
[40] Potemkin I I 2004 Macromolecules 37 3505
[41] Huang E, Pruzinsky S, Russell T P, Mays J and Hawker C J 1999 Macromolecules 32 5299
[42] Milner S T 1991 Science 251 905
[43] Ferreira P G and Leibler L 1996 J. Chem. Phys. 105 9362
[44] Matsen M W and Griffiths G H 2009 Eur. Phys. J. E 29 219
[45] Dong H, Marko J F and Witten T A 1994 Macromolecules 27 6428
[46] Marko J F and Witten T A 1992 Macromolecules 25 296
[47] Zhulina E and Balazs A C 1996 Macromolecules 29 2667
[48] Lai P Y 1994 J. Chem. Phys. 100 3351
[49] Seifpour A, Spicer P, Nair N and Jayaraman A 2010 J. Chem. Phys. 132 164901
[50] Xie S J, Qian H J and Lu Z Y 2015 Polymer 56 545
[51] Ren C L, Chen K and Ma Y Q 2005 J. Chem. Phys. 122 154904
[52] Ren C L and Ma Y Q 2006 J. Am. Chem. Soc. 128 2733
[53] Li M and Zhu Y J 2008 Acta Phys. Sin. 57 7555 (in Chinese)
[54] Tang T T, Fan X S, Jin Y and Wang G W 2014 Polymer 55 3680
[55] Stasiak P and Matsen M W 2011 Eur. Phys. J. E 34 110
[56] Matsen M W 2009 Eur. Phys. J. E 30 361
[57] Li S B, Chen P, Zhang L X and Liang H J 2011 Langmuir 27 5081
[1] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[2] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[3] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[4] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[5] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[6] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[7] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[8] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[9] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[10] A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential
Tsogbayar Tsednee, Danny L Yeager. Chin. Phys. B, 2017, 26(8): 083101.
[11] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[12] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[13] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[14] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[15] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
No Suggested Reading articles found!