Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 124302    DOI: 10.1088/1674-1056/24/12/124302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

Yuan Yi (袁毅)a, Li Xiao-Li (李小俚)b c
a Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
b State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China;
c Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
Abstract  Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders.
Keywords:  Hall-effect      stimulation      passive cable model      neurons  
Received:  23 March 2015      Revised:  24 June 2015      Accepted manuscript online: 
PACS:  43.64.+r (Physiological acoustics)  
  87.50.Y- (Biological effects of acoustic and ultrasonic energy)  
  87.50.wf (Biophysical mechanisms of interaction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61273063 and 61503321), the China Postdoctoral Science Foundation (Grant No. 2013M540215), the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161), and the Youth Research Program of Yanshan University, China (Grant No. 02000134).
Corresponding Authors:  Yuan Yi, Li Xiao-Li     E-mail:  yuanyi513@ysu.edu.cn;xiaoli@bnu.edu.cn

Cite this article: 

Yuan Yi (袁毅), Li Xiao-Li (李小俚) Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model 2015 Chin. Phys. B 24 124302

[1] Hallett M 2000 Nature 406 147
[2] Liu X, Gao Q and Li X L 2014 Chin. Phys. B 23 010202
[3] Jin Q T, Wang J, Wei X L, Deng B and Che Y Q 2011 Acta Phys. Sin. 60 098701 (in Chinese)
[4] Baudewig J, Paulus W and Frahm J 2000 Magn. Reson. Imaging 18 479
[5] Jin Q T X, Wang J, Yi G S, Li H Y, Deng B, Wei X L and Che Y Q 2012 Acta Phys. Sin. 61 118701 (in Chinese)
[6] Kobayashi M and Pascual-Leone A 2003 Lancet. Neurology 2 145
[7] Norton S J 2003 Biomed. Eng. 2 1
[8] Zangena A, Rothc Y, Vollerd B and Hallettd M 2005 Clinical Neurophysiology 116 775
[9] Bystritsky A, Korb A S, Douglas P K, Cohen M S, Melega W P, Mulgaonkar A P, DeSalles A, Min B K and Yoo S S 2011 Brain Stimulation 4 125
[10] Walsh V and Cowey A 2000 Nat. Rev. Neuroscience 1 732000
[11] Tufail Y, Matyushov A, Baldwin N, Tauchmann M L, Georges J, Yoshihiro A, Tillery S I H and Tyler W J 2010 Neuron 66 681
[12] Plaksin M, Shoham S and Kimmel E 2014 Phys. Rev. X 4 011004
[13] Tyler W J 2011 Neuroscientist 17 25
[14] Yoo S S, Bystritsky A, Lee J H, Zhang Y Z, Fischer K, Min B K, McDannold N J, Pascual-Leone A and Jolesz F A 2011 NeuroImage 56 1267
[15] Tufail Y, Yoshihiro A, Pati S, Li M M and Tyler W J 2011 Nat. Protocols 6 1453
[16] Hameroff S, Trakas M, Duffield C, Annabi E, Gerace M B, Boyle P, Lucas A, Amos Q, Buadu A and Badal J J 2013 Brain Stimulation 6 409
[17] Legon W, Sato T F, Opitz A, Mueller J, Barbour A, Williams A and Tyler W J 2014 Nat. Neuroscience 7 1
[18] Tyler W J, Tufail Y, Finsterwald M, Tauchmann M L, Olson EJ and Majestic C 2008 PLoS ONE 3
[19] Grasland-Mongrain P, Mari J M, Chapelon J Y and Lafon C 2013 Research in Imaging and Health Technologies 34 357
[20] Wen H 1999 Ultrasonic Imaging 21 186
[21] Zhu T 2014 Chin. Phys. B 23 047504
[22] Chen M, He P, Zhou S M and Shi Z 2014 Chin. Phys. B 23 017104
[23] Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201
[24] Ye J, He W, Hu B, Tang J, Zhang Y S, Zhang X Q, Chen Z Y and Cheng Z H 2015 Chin. Phys. B 24 027505
[25] Roth B J and Basser P J 1990 IEEE Trans. Biomed. Eng. 37 588
[26] Clark J and Plonsey R A 1966 Biophys. J. 6 95
[27] Nyborg W L 2001 Ultrasound. Med. Biol. 27 301
[28] Tehovnik E J 1996 J. Neurosci. Methods 65 1
[29] Grill W M 1999 IEEE Trans. Biomed. Eng. 46 918
[30] Hsu K H and Durand D M 2000 IEEE Trans. Biomed. Eng. 47 463
[31] Campanella A J 2002 J. Acous. Soc. Am. 111 2087
[32] Montalibet A, Jossinet J, Matoas A and Cathignol D 2001 Med. Biolog. Eng. Comput. 39 15
[33] Wen H 2000 Ultrasonic Imaging 22 123
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[3] Parkinsonian oscillations and their suppression by closed-loop deep brain stimulation based on fuzzy concept
Xi-Le Wei(魏熙乐), Yu-Lin Bai(白玉林), Jiang Wang(王江), Si-Yuan Chang(常思远), and Chen Liu(刘晨). Chin. Phys. B, 2022, 31(12): 128701.
[4] Computational model investigating the effect of magnetic field on neural-astrocyte microcircuit
Li-Cong Li(李利聪), Jin Zhou(周瑾), Hong-Ji Sun(孙洪吉), Peng Xiong(熊鹏), Hong-Rui Wang(王洪瑞), Xiu-Ling Liu(刘秀玲), and Chang-Yong Wang(王常勇). Chin. Phys. B, 2021, 30(6): 068702.
[5] Effect of exit location on flow of mice under emergency condition
Teng Zhang(张腾), Shen-Shi Huang(黄申石), Xue-Lin Zhang(张学林), Shou-Xiang Lu(陆守香), Chang-Hai Li(黎昌海). Chin. Phys. B, 2019, 28(1): 010505.
[6] A new brain stimulation method: Noninvasive transcranial magneto-acoustical stimulation
Yi Yuan(袁 毅), Yu-Dong Chen(陈玉东), Xiao-Li Li(李小俚). Chin. Phys. B, 2016, 25(8): 084301.
[7] Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum
Yuan Yi (袁毅), Lu Cheng-Biao (路承彪), Li Xiao-Li (李小俚). Chin. Phys. B, 2015, 24(8): 088704.
[8] Enhancing UV photosensitivity of ZnO UV nanosensor using electrical stimulation at megahertz frequency
Li De-Zhao (李德钊), Zhu Rong (朱荣). Chin. Phys. B, 2013, 22(1): 018502.
[9] Analytical solutions of transient pulsed eddy current problem due to elliptical electromagnetic concentrative coils
Xiao Chun-Yan(肖春燕) and Zhang Jun(张军). Chin. Phys. B, 2010, 19(12): 120302.
[10] Development and transition of spiral wave in the coupled Hindmarsh--Rose neurons in two-dimensional space
Ma Jun(马军), Ying He-Ping(应和平), Liu Yong(刘勇), and Li Shi-Rong(李世荣). Chin. Phys. B, 2009, 18(1): 98-105.
No Suggested Reading articles found!