Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118902    DOI: 10.1088/1674-1056/24/11/118902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Universal relation for transport in non-sparse complex networks

Wang Yan (王延)a, Yang Xiao-Rong (杨晓荣)b
a School of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
b School of Science, Tibet University, Lhasa 850000, China
Abstract  Transport properties of a complex network can be reflected by the two-point resistance between any pair of two nodes. We systematically investigate a variety of typical complex networks encountered in nature and technology, in which we assume each link has unit resistance, and we find for non-sparse network connections a universal relation exists that the two-point resistance is equal to the sum of the inverse degree of two nodes up to a constant. We interpret our observations by the localization property of the network’s Laplacian eigenvectors. The findings in this work can possibly be applied to probe transport properties of general non-sparse complex networks.
Keywords:  transport      complex networks      two-point resistor      Laplacian eigenvectors  
Received:  02 April 2015      Revised:  10 June 2015      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.60.Cd (Classical transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305268 and 11465017).
Corresponding Authors:  Yang Xiao-Rong     E-mail:  xzdxyr@sina.com

Cite this article: 

Wang Yan (王延), Yang Xiao-Rong (杨晓荣) Universal relation for transport in non-sparse complex networks 2015 Chin. Phys. B 24 118902

[1] Kirkpatrick S;1973 Rev. Mod. Phys. 45 574
[2] Sahimi M;1993 Rev. Mod. Phys. 65 1393
[3] Berkowitz B, Cortis A, Dentz M and Scher H 2006 Rev. Geophys. 44 RG2003
[4] López E, Buldyrev S V, Havlin S and Stanley H E 2005 Phys. Rev. Lett. 94 248701
[5] Albert R and Barabási A L;2002 Rev. Mod. Phys. 74 47
[6] Erdös P and Rényi A 1959 Publ. Math. 6 290
[7] Sok R, Knackstedt M, Sheppard A, Pinczewski W, Venkatarangan A and Paterson L;2002 Trans. Porous Med. 46 345
[8] Albert R, Albert I and Nakarado G L;2004 Phys. Rev. E 69 025103(R)
[9] Watts D J and Strogatz S H;1998 Nature 393 440
[10] Huang L, Park K, Lai Y C, Yang L and Yang K;2006 Phys. Rev. Lett. 97 164101
[11] Wu F Y;2004 J. Phys. A 37 6653
[12] Tan Z Z, Essam J W and Wu F Y;2014 Phys. Rev. E 90 012130
[13] Tan Z Z;2015 Chin. Phys. B 24 020503
[14] McGraw P N and Menzinger M;2008 Phys. Rev. E 77 031102
[15] Nakao H and Mikhailov A S;2010 Nat. Phys. 6 544
[16] Hata S, Nakao H and Mikhailov A S;2014 Sci. Rep. 4 3585
[17] Hata S, Nakao H and Mikhailov A S;2014 Phys. Rev. E 89 020801(R)
[18] Li G, Braunstein L A, Buldyrev S V, Havlin S and Stanley H E 2007 Phys. Rev. E 75 045103(R)
[19] Carmi S, Wu Z, López E, Havlin S and Stanley H E 2007 Eur. Phys. J. B 57 165
[20] Carmi S, Wu Z, Havlin S and Stanley H E;2008 Europhys. Lett. 84 28005
[21] Nicolaides C, Cueto-Felgueroso L and Juanes R;2010 Phys. Rev. E 82 055101
[22] Wang Y;2013 Phys. Rev. E 87 032144
[23] Bijeljic B, Raeini A, Mostaghimi P and Blunt M J;2013 Phys. Rev. E 87 013011
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[4] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[10] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[11] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[14] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!