Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 118103    DOI: 10.1088/1674-1056/24/11/118103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial

Ding Guo-Wen (丁国文)a, Liu Shao-Bin (刘少斌)a, Zhang Hai-Feng (章海锋)a b, Kong Xiang-Kun (孔祥鲲)a c, Li Hai-Ming (李海明)a, Li Bing-Xiang (李炳祥)a, Liu Si-Yuan (刘思源)a, Li Hai (李海)b
a Key Laboratory of Radar Imaging and Microwave Photonics of Ministry of Education, Nanjing University of Aeronauticsand Astronautics, Nanjing 210016, China;
b Nanjing Artillery Academy, Nanjing 211132, China;
c State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract  A graphene-based metamaterial with tunable electromagnetically induced transparency (EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators.
Keywords:  graphene      metamaterial      electromagnetically induced transparency  
Received:  25 April 2015      Revised:  06 July 2015      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61307052), the Youth Funding for Science & Technology Innovation in Nanjing University of Aeronautics and Astronautics, China (Grant No. NS2014039), the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20123218110017), the Innovation Program for Graduate Education of Jiangsu Province, China (Grant Nos. KYLX_0272, CXZZ13_0166, and CXLX13_155), the Open Research Program in National State Key Laboratory of Millimeter Waves of China (Grant No. K201609), and the Fundamental Research Funds for the Central Universities of China (Grant No. kfjj20150407).
Corresponding Authors:  Liu Shao-Bin     E-mail:  plrg@nuaa.edu.cn

Cite this article: 

Ding Guo-Wen (丁国文), Liu Shao-Bin (刘少斌), Zhang Hai-Feng (章海锋), Kong Xiang-Kun (孔祥鲲), Li Hai-Ming (李海明), Li Bing-Xiang (李炳祥), Liu Si-Yuan (刘思源), Li Hai (李海) Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial 2015 Chin. Phys. B 24 118103

[1] Boller K J, Imamolu A and Harris S E;1991 Phys. Rev. Lett. 66 2593
[2] Liu S D, Yang Z, Liu R P and Li X Y;2011 Opt. Express 19 15363
[3] Li H M, Liu S B, Liu S Y, Wang S Y, Ding G W, Yang H and Zhang H F;2015 Appl. Phys. Lett. 106 083511
[4] He X J, Wang L, Wang J M, Tian X H, Jiang J X and Geng Z X;2013 J. Phys. D: Appl. Phys. 46 365302
[5] Xu H, Lu Y, Lee Y and Ham B S;2010 Opt. Express 18 17736
[6] Lu Y, Jin X, Zheng H, Lee Y, Rhee J Y and Jang W H;2010 Opt. Express 18 13396
[7] Aydin K, Pryce I M and Atwater H A;2010 Opt. Express 18 13407
[8] Dong Z G, Liu H, Xu M X, Li T, Wang S M, Zhu S N and Zhang X;2010 Opt. Express 18 18229
[9] Yannopapas V, Paspalakis E and Vitanov N V;2009 Phys. Rev. B 80 035104
[10] Kekatpure R D, Barnard E S, Cai W and Brongersma M L;2010 Phys. Rev. Lett. 104 243902
[11] Jin X R, Park J, Zheng H, Lee S, Lee Y, Rhee J Y and Jang W H;2011 Opt. Express 19 21652
[12] Tassin P, Zhang L, Koschny T, Economou E N and Soukoulis C M;2009 Phys. Rev. Lett. 102 053901
[13] He X J, Wang J M, Tian X H, Jiang J X and Geng Z X;2013 Opt. Commun. 291 371
[14] Zhu L, Meng F Y, Fu J H and Wu Q;2012 J. Phys. D: Appl. Phys. 45 445105
[15] Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V and Soukoulis C M;2011 Phys. Rev. Lett. 107 043901
[16] Tamayama Y, Nakanishi T, Wakasa Y, Kanazawa T, Sugiyama K and Kitano M;2010 Phys. Rev. B 82 165130
[17] Tassin P, Zhang L, Zhao R, Jain A, Koschny T and Soukoulis C M;2012 Phys. Rev. Lett. 109 187401
[18] Jin X R, Lu Y, Park J, Zheng H, Gao F, Lee Y and Jang W H;2012 J. Appl. Phys. 111 073101
[19] Duan X, Chen S, Yang H, Cheng H, Li J, Liu W, Gu C and Tian J;2012 Appl. Phys. Lett. 101 143105
[20] Duan X, Chen S, Cheng H, Li Z and Tian J 2013 Opt. Lett. 38 483
[21] Nakanishi T, Otani T, Tamayama Y and Kitano M;2013 Phys. Rev. B 87 161110
[22] Bai Q, Liu C, Chen J, Cheng C, Kang M and Wang H T;2010 J. Appl. Phys. 107 093104
[23] Zhu W, Rukhlenko I D and Premaratne M;2013 Appl. Phys. Lett. 102 241914
[24] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F;2013 Nano Lett. 13 1257
[25] Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T;2014 Opt. Express 22 22743
[26] Vasić B, Jakovljević M M, Isić G and Gajić R;2013 Appl. Phys. Lett. 103 011102
[27] Yin H, He D, Wang Y, Duan J, Wang S, Fu M and Wang W;2014 Chin. Phys. B 23 128103
[28] Yu Z, Tian J and Song Y;2014 Chin. Phys. B 23 094206
[29] Cheng H, Chen S, Yu P, Li J, Xie B, Li Z and Tian J;2013 Appl. Phys. Lett. 103 223102
[30] Cheng H, Chen S, Yu P, Li J, Deng L and Tian J;2013 Opt. Lett. 38 1567
[31] Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M and Zhang H;2014 Sci. Rep. 4 6128
[32] Amin M, Farhat M and Bağcı H;2013 Sci. Rep. 3 2105
[33] Vasić B, Isić G and Gajić R;2013 J. Appl. Phys. 113 013110
[34] Fallahi A and Perruisseau-Carrier J;2012 Appl. Phys. Lett. 101 231605
[35] Andryieuski A and Lavrinenko A V;2013 Opt. Express 21 9144
[36] Ning R, Liu S, Zhang H, Bian B and Kong X;2014 Eur. Phys. J. Appl. Phys. 68 20401
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[8] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[9] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[13] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!