Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117203    DOI: 10.1088/1674-1056/24/11/117203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods

Mehdi Ahmadi, Sajjad Rashidi Dafeh
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Abstract  In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6-6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.
Keywords:  electrochemical deposition      density-controlled ZnO nanorods      inverted polymer solar cells      active area modification  
Received:  16 February 2015      Revised:  09 May 2015      Accepted manuscript online: 
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  73.61.-r (Electrical properties of specific thin films)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Corresponding Authors:  Mehdi Ahmadi     E-mail:  m.ahmadi@vru.ac.ir

Cite this article: 

Mehdi Ahmadi, Sajjad Rashidi Dafeh Photoactive area modification in bulk heterojunctionorganic solar cells using optimization of electrochemicallysynthesized ZnO nanorods 2015 Chin. Phys. B 24 117203

[1] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y;2005 Nat. Mater. 4 864
[2] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J;2007 Science 317 222
[3] Günes S, Neugebauer H and Sariciftci N S 2007 Chem. Rev. 107 1104
[4] Park S H, Roy A, Beaupré S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K and Heeger A J 2009 Nat. Photonics. 3 297
[5] Chen L M, Hong Z, Li G and Yang Y;2009 Adv. Mater. 21 1434
[6] Dennler G, Scharber M C and Brabec C J;2009 Adv. Mater. 21 1103
[7] Brabec C J, Gowrisanker S, Halls J J M, Laird D, Jia S and Williams S P;2010 Adv. Mater. 22 3839
[8] Xu Z Q, Li J, J P Yang, Cheng P P, Zhao J, Lee S T, Li Y Q and Tang J X;2011 Appl. Phys. Lett. 98 253303
[9] Blouin N, Michaud A, Gendron D, Wakim S, Belletête M, Durocher G, Tao Y and Leclerc M;2008 J. Am. Chem. Soc. 130 732
[10] Y Liang, Wu Y, Feng D, Tsai S T, Son H J, Li G and Yu L;2009 J. Am. Chem. Soc. 131 56
[11] Cho N, Yip H L, Hau S K, Chen K S, Kim T W, Davies J A, Zeigler D F and Jen A K Y;2011 J. Mater. Chem. 21 6956
[12] Xu Z Q, Yang J P, Sun F Z, Lee S T, Li Y Q and Tang J X;2012 Org. Electron. 13 697
[13] Ma W L, Yang C Y, Gong X, Lee K and Heeger A J;2005 Adv. Funct. Mater. 15 1617
[14] Yang C, Kim J Y, Cho S, Lee J K, Heeger A J and Wudl F;2008 J. Am. Chem. Soc. 130 6444
[15] Yan H, Lee P, Armstrong N R, Graham A, Evmenenko G A, Dutta P and Marks T J;2005 J. Am. Chem. Soc. 127 3172
[16] Norrman K, Madsen M V, Gevorgyan S A and Krebs F C 2010 J. Am. Chem. Soc. 110 16883
[17] Norrman K, Gevorgyan S A and Krebs F C 2009 ACS Appl. Mater. Interfaces. 1 102
[18] Jorgensen M, Norrman K and Krebs F C;2008 Sol. Energy Mater. Sol. Cells. 92 686
[19] Sahin Y, Alem S, Bettignies R D and Nunzi J M;2005 Thin Solid Films 476 340
[20] Li G, Chu C W, Shrotriya V, Huang J and Yang Y;2006 Appl. Phys. Lett. 88 253503
[21] White M S, Olson D C, Shaheen S E, Kopidakis N and Ginley D S;2006 Appl. Phys. Lett. 89 143517
[22] Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis S A and Brabec C J;2006 Appl. Phys. Lett. 89 233517
[23] Huang J S, Chou C Y and Lin C F;2010 IEEE Electron Device Lett. 31 332
[24] Tan Z, Zhang W, Zhang Z, Qian D, Huang Y, Hou J and Li Y;2012 Adv. Mater. 24 1476
[25] Bulliard X, Ihn S, Yun S, Kim Y, Choi D, Choi J, Kim M, Sim M, Park J, Choi W and Cho K;2010 Adv. Funct. Mater. 20 4381
[26] Sun Y, Seo J, Takacs C, Seifter J and Heeger A;2011 Adv. Mater. 23 1679
[27] Krebs F, Tromholt T and Jorgensen M;2010 Nanoscale 2 873
[28] Schmidt H, Zilberberg K, Schmale S, Flugge H, Riedl T and Kowalsky W;2010 Appl. Phys. Lett. 96 243305
[29] Ahmadi M, Mirabbaszadeh K, Salari S and Fatehy H;2014 Electron. Mater. Lett. 10 951
[30] Coakley K M and McGehee M D;2003 Appl. Phys. Lett. 83 3380
[31] Zukalova M, Zukal A, Kavan L, Nazeeruddin M K, Liska P and Gratzel M;2005 Nano Lett. 5 1789
[32] Sun B, Snaith H J, Dhoot A S, Westenhoff S and Greenham N C;2005 J. Appl. Phys. 97 014914
[33] Ahmadi M, Mirabbaszadeh K and Ketabchi M;2013 Electron. Mater. Lett. 9 729
[34] Ravirajan P, Peiró A M, Nazeeruddin M K, Graetzel M, Bradley D D C, Durrant J R and Nelson J;2006 J. Phys. Chem. B 110 7635
[35] Olson D C, Piris J, Collins R T, Shaheen S E and Ginley D S;2006 Thin Solid Films. 496 26
[36] Huang J S, Chou C Y, Liu M Y, Tsai K H, Lin W H and Lin C F;2009 Org. Electron. 10 1060
[37] Takanezawa K, Hirota K, Wei Q, Tajima K and Hashimoto K 2007 J. Phys. Chem. C 111 7218
[38] Peiro A M, Ravirajan P, Govender K, Boyle D S, Brien P O, Bradley D D C, Nelson J and Durrant J R 2006 J. Mater. Chem. 16 2088
[39] Lee Y J, Davis R J, Lioyd M T, Provencio P P, Prasankumar R P and Hsu J W P;2010 IEEE J. Sel. Top. Quant. 16 1587
[40] Ruankham P, Macaraig L, Sagawa T, Nakazumi H and Yoshikawa S;2011 J. Phys. Chem. C 115 23809
[41] Yuan Z, Yu J, Wang N and Jiang Y;2011 J. Mater. Sci.-Mater. El. 22 1730
[42] Qurashi A, Hwan K J and Hahn Y B;2012 Sol. Energ. Mat. Sol. C 98 476
[43] Mirabbaszadeh K, Ahmadi M, Khosravi M, Mokhtari R and Salari S;2013 J. Inorg. Organomet. Polym. 23 1219
[44] Lee Y J, Lioyd M T, Olson D C, Grubbs R K, Lu P, Davis R J, Voigt J A and Hsu J W P;2009 J. Phys. Chem. C 113 15778
[45] Oosterhout S D, Wienk M M, Bavel S S V, Thiedmann R, Koster L J A, Gilot J, Loos J, Schmidt V and Janssen R A;2009 J. Nat. Mater. 8 818
[46] Lee T H, Sue H J and Cheng X;2011 Nanotechnology 22 285401
[47] Bi D, Wu F, Yue W, Guo Y, Shen W, Peng R, Wu H, Wang X and Wang M;2010 J. Phys. Chem. C 114 13846
[48] Olson D C, Lee Y J, White M S, Kopidakis N, Shaheen S E, Ginley D S, Voigt J A and Hsu J W P;2007 J. Phys. Chem. C 111 16640
[49] Valls I G and Cantu M L;2009 Energy Environ. Sci. 2 19
[50] Olson D C, Shaheen S E, Collins R T and Ginley D S 2007 J. Phys. Chem. C 111 16670
[51] Takanezawa K, Tajima K and Hashimoto K 2008 Appl. Phys. Lett. 93 063308
[52] Yodyingyong S, Zhou X, Zhang Q, Triampo D, Xi J, Park K, Imketkai B and Cao G;2010 J. Phys. Chem. C 114 21851
[53] Chen C T, Hsu F C, Kuan S W and Chen Y F;2011 Sol. Energ. Mat. Sol. C 95 740
[54] Sung Y M, Hsu F C, Chen C T, Su W F and Chen Y F;2012 Sol. Energ. Mat. Sol. C 98 103
[55] Park W I and Yi G C;2004 Adv. Mater. 16 87
[56] Li L M, Du Z F, Li C C, Zhang J and Wang T H;2007 Nanotechnology 18 355606
[57] Vayssieres L;2003 Adv. Mater. 15 464
[58] Mehrabian M, Azimirad R, Mirabbaszadeh K, Afarideh H and Davoudian M;2011 Physica E 43 1141
[59] Mirabbaszadeh K and Mehrabian M;2012 Phys. Scr. 85 035701
[60] Akhavan O, Mehrabian M, Mirabbaszadeh K and Azimirad R J. Phys. D: Appl. Phys. 42 225305
[61] Jie J S, Wang G Z and Wang Q T 2004 J. Phys. Chem. B 108 11976
[62] Rakhshani A E;2008 J. Appl. Phys. A 92 303
[63] Yao B D, Chan Y F and Wang N;2002 J. Appl. Phys. Lett. 81 757
[64] Lupan O, Pauporte T, Tiginyanu I M, Ursaki V V, Heinrich H and Chow L;2011 Mat. Sci. Eng. B-Solid. 176 1277
[65] Lan X Z, Jiang Y, Liu X M, Wang W J, Wang B B, Wu D, Liu C, Zhang Y G and Zhong H H;2011 Cryst. Growth. Des. 11 3837
[66] Dai S, Li Y, Du Z and Carter K R 2013 J. Electrochem. Soc. 160 156
[67] Zhang S, Zhang W and Lu G;2015 Mater. Lett. 138 262
[68] Sekine Y, Chou C H, Kwan W L and Yang Y;2009 Org. Electron. 10 1473
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Samaneh Ghazanfarpour, Mohammad Khanzadeh. Chin. Phys. B, 2017, 26(9): 097203.
[3] Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes
Mehdi Ahmadi, Sajjad Rashidi Dafeh, Hamed Fatehy. Chin. Phys. B, 2016, 25(4): 047201.
[4] Fabrication of ZnO nanoparticles-embedded hydrogenated diamond-like carbon films by electrochemical deposition technique
Zhang Pei-Zeng (张培增), Li Rui-Shan (李瑞山), Pan Xiao-Jun (潘效军), Xie Er-Qing (谢二庆). Chin. Phys. B, 2013, 22(5): 058106.
No Suggested Reading articles found!