Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116803    DOI: 10.1088/1674-1056/24/11/116803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low contact resistivity between Ni/Au and p-GaN through thin heavily Mg-doped p-GaN and p-InGaN compound contact layer

Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Thin heavily Mg-doped InGaN and GaN compound contact layer is used to form Ni/Au Ohmic contact to p-GaN. The growth conditions of the compound contact layer and its effect on the performance of Ni/Au Ohmic contact to p-GaN are investigated. It is confirmed that the specific contact resistivity can be lowered nearly two orders by optimizing the growth conditions of compound contact layer. When the flow rate ratio between Mg and Ga gas sources of p++-InGaN layer is 10.6% and the thickness of p++-InGaN layer is 3 nm, the lowest specific contact resistivity of 3.98×10-5Ω·cm2 is achieved. In addition, the experimental results indicate that the specific contact resistivity can be further lowered to 1.07×10-7Ω ·cm2 by optimizing the alloying annealing temperature to 520 ℃.
Keywords:  Ohmic contact      growth conditions      compound contact layer      tunneling  
Received:  20 April 2015      Revised:  19 August 2015      Accepted manuscript online: 
PACS:  68.35.Ja (Surface and interface dynamics and vibrations)  
  61.72.uj (III-V and II-VI semiconductors)  
  61.82.Bg (Metals and alloys)  
  67.25.bh (Films and restricted geometries)  
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126) and the National Science Fund for Distinguished Young Scholars, China (Grant No. 60925017).
Corresponding Authors:  Zhao De-Gang     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光) Low contact resistivity between Ni/Au and p-GaN through thin heavily Mg-doped p-GaN and p-InGaN compound contact layer 2015 Chin. Phys. B 24 116803

[1] LinY J;2005 Appl. Phys. Lett. 86 122109
[2] Nakamura S and Fasol G 1997 The Blue Laser Diode
[3] Luther B P, Mohney S E, Jackson T N, Asif K M, Chen Q and Yang J W;1997 Appl. Phys. Lett. 70 57
[4] Song J O, KimS H, Kwak J S and Seong T Y;2003 Appl. Phys. Lett. 83 1154
[5] Huang Y P, Yun F, Ding W, Wang Y, Wang H, Zhao Y K, Zhang Y, Guo M F, Hou X and L S;2014 Acta. Phys. Sin. 63 127302 (in Chinese)
[6] Narayan J, Wang H, Oh T H, Choi H K and Fan J C C;2002 Appl. Phys. Lett. 81 3978
[7] Kim H K, Seong T Y, Adesida I, Tang C W and Lau K M;2004 Appl. Phys. Lett. 84 1710
[8] Li T, Qin Z X, Xu Z Y, Shen B and Zhang G Y;2011 Chin. Phys. B 20 046101
[9] Chary I, Chandolu A, Borisov B, Kuryatkov V, Nikishin S and Holtz M;2009 J. Electron. Mater. 38 545
[10] Greco G, Prystawko P, Leszczynński M, Nigro R L, Raineri V and Roccaforte F;2011 J. Appl. Phys. 110 123703
[11] Sun J, Rickert K A, Redwing J M, Ellis A B, Himpsel F J and Kuech T F;2000 Appl. Phys. Lett. 76 415
[12] Gessmann T, Li Y L, Waldron E L, Graff J W, Schubert E F and Sheu J K;2002 Appl. Phys. Lett. 80 986
[13] Jang J S and Seong T Y;2007 J. Appl. Phys. 101 013711
[14] Jang J S, Sohn S J, Kim D and Seong T Y;2006 Semicond. Sci. Technol. 21 L37
[15] Kwak J S;2004 J. Appl. Phys. 95 5917
[16] Park Y and Kim H;2011 Appl. Phys. Express. 4 085701
[17] Wu L L, Zhao D G, Jiang D S, Chen P, Le L C, Li L, Liu Z S, Zhang S M, Zhu J J, Wang H, Zhang B S and Yang H;2013 Semicond. Sci. Technol. 28 105020
[18] Pettersen S V, Grande A P, Tybell T, Riechert H, Averbeck R and Grepstad J K;2007 Semicond. Sci. Technol. 22 186
[19] Dai C C, Liu X C, Zhou T Y, Zhuo S Y, Shi B and Shi E W;2014 Chin. Phys. B 23 066803
[20] Li X J, Zhao D G, Jiang D S, Liu Z S, Chen P, Zhu J J, Le L C, Yang J, He X G, Zhang S M, Zhang B S, Liu J P and Yang H;2014 J. Appl. Phys. 116 163708
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[5] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[6] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[10] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[11] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[12] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[13] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!