Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 116103    DOI: 10.1088/1674-1056/24/11/116103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes

Yang Jian-Qun (杨剑群)a, Li Xing-Ji (李兴冀)a, Liu Chao-Ming (刘超铭)a, Ma Guo-Liang (马国亮)a, Gao Feng (高峰)b
a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
b National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space application in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irradiation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5×1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom displacements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent.
Keywords:  electron irradiation      multi-walled carbon nanotubes      damage mechanisms      Raman spectroscopy  
Received:  28 March 2015      Revised:  20 July 2015      Accepted manuscript online: 
PACS:  61.46.Fg (Nanotubes)  
  73.63.Fg (Nanotubes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51503053).
Corresponding Authors:  Li Xing-Ji     E-mail:  lxj0218@hit.edu.cn

Cite this article: 

Yang Jian-Qun (杨剑群), Li Xing-Ji (李兴冀), Liu Chao-Ming (刘超铭), Ma Guo-Liang (马国亮), Gao Feng (高峰) Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes 2015 Chin. Phys. B 24 116103

[1] Endo M, Strano M S and Ajayan P M 2008 Potential Applications of Carbon Nanotubes in Carbon Nanotubes, Topics in Applied Physics (ed. Jorio A, Dresselhaus G, Dresselhaus M S) (Berlin Heidelberg: Springer-Verlag) 111 13
[2] Comfort E S, Fishman M, Malapanis A, Hughes H, McMarr P, Cress C D, Bakhru H and Lee J U;2011 IEEE Trans. Nucl. Sci. 58 2898
[3] Boul P J, Turner K, Li J, Pulikkathara M X, Dwivedi R C, Sosa E D, Lu Y J, Kuznetsov O V, Moloney P, Wilkins R, O’Rourke M J, Kliabashesku V N, Arepalli S and Yowel L 2009 J. Phys. Chem. C 113 14467
[4] Cress C D, Schauerman C M, Landi B J, Messenger S R, Raffaelle R P and Walters R J 2010 J. Appl. Phys. 107 014316
[5] Cress C D, McMorrow J J, Robinson J T, Friedman A L and Landi B J 2010 IEEE Trans. Nucl. Sci. 57 3040
[6] Barth J L, Dyer C S and Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466
[7] Chopra N G, Ross F M and Zettle A 1996 Chem. Phys. Lett. 256 241
[8] Kiang C H, Goddard W A, Beyers R and Bethune D S 1996 J. Phys. Chem. 100 3749
[9] Banhart F, Li J X and Krasheninnikov A V 2005 Phys. Rev. B 71 241408 (R)
[10] Banhart F 1999 Rep. Prog. Phys. 62 1181
[11] Krasheninnikov A V and Nordlund K 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 216 355
[12] Kanzaki K, Suzuki S, Inokawa H, Ono Y, Vijayaraghavan A and Kobayashi Y 2007 J. Appl. Phys. 101 034317
[13] Suzuki S and Kobayashi Y 2006 Chem. Phys. Lett. 430 370
[14] Smith B W and Luzzi D E J 2001 J. Appl. Phys. 90 3509
[15] Bachtold A, Henny M, Terrier C, Strunk C, Schonenberger C and Salvetat J P 1998 Appl. Phys. Lett. 73 274
[16] Hobara R, Yoshimoto S, Ikuno T, Katayama M, Yamauchi N and Wongwiriyapan W 2004 J. Appl. Phys. 43 L1081
[17] Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J C and Ajayan P M 2000 Phys. Rev. Lett. 84 1716
[18] Li L X, Su J B, Wu Y, Zhu X F and Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese)
[19] Xu T, Yang J H, Liu J W and Fu Q 2007 Appl. Surf. Sci. 253 8945
[20] Casiraghi C, Ferrari A C and Robertson J 2005 Phys. Rev. B 72 085401
[21] Bacsa W S, Ugarte D, Chatelain A and Deheer W A 1994 Phys. Rev. B 50 15473
[22] Ni Z C, Li Q T, Gong J L, Zhu D Z and Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 260 542
[23] Huang Y and Young R J 1995 Carbon 33 97
[24] Xu Z W, Chen L, Liu L S, Wu X Q and Chen L 2011 Carbon 49 339
[25] Suzuki S and Kobayashi Y 2007 Low-energy Irradiation Damage in Single-walled Carbon Nanotubes. MRS Proceedings, Symposium F-Semiconductor Defect Engineering-Materials, Synthetic Structures and Devices II 994
[26] Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301
[27] Yoon M, Howe J, Tibbetts G, Eres G and Zhang Z Y 2007 Phys. Rev. B 75 165402
[28] Chipara M, Morjan I, Alexandrescu R, Zaleski J M, Remmes N and Baxter D V 2005 J. Polym. Sci., Part B: Polym. Phys. 43 3432
[29] Adhikari A R, Bakhru H, Ajayan P M, Benson R and Chipara M 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 265 347
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[8] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[9] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[10] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[11] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[12] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[13] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[14] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[15] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
No Suggested Reading articles found!