Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107802    DOI: 10.1088/1674-1056/24/10/107802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots

Qi Li-Mei (亓丽梅)a b, Li Chao (李超)a, Fang Guang-You (方广有)a, Li Shi-Chao (李士超)a
a Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China;
b School of Electronic Engineering, Bejing University of Posts and Communications, Beijing 100876, China
Abstract  

A dual-band terahertz (THz) filter consisting of two different cross slots is designed and fabricated in a single molybdenum layer. Experimental verification by THz time-domain spectroscopy indicates good agreement with the simulation results. Owing to the weak coupling between the two neighboring cross slots in the unit cell, good selectivity performance can be easily achieved, both in the lower and higher bands, by tuning the dimensions of the two crosses. The physical mechanisms of the dual-band resonant are clarified by using three differently configured filters and electric field distribution diagrams. Owing to the rotational symmetry of the cross-shaped filter, the radiation at normal incidence is insensitive to polarization. Compared with the THz dual-band filters that were reported earlier, these filters also have the advantages of easy fabrication and low cost, which would find applications in dual-band sensors, THz communication systems, and emerging THz technologies.

Keywords:  dual-band      filters      metamaterial      terahertz  
Received:  03 May 2015      Revised:  18 June 2015      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  84.30.Vn (Filters)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174280 and 61107030), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123), and the China Postdoctoral Science Foundation (Grant No. 2012M520377).

Corresponding Authors:  Li Chao     E-mail:  cli@mail.ie.ac.cn

Cite this article: 

Qi Li-Mei (亓丽梅), Li Chao (李超), Fang Guang-You (方广有), Li Shi-Chao (李士超) Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots 2015 Chin. Phys. B 24 107802

[1] Zandonella C 2003 Nature 424 721
[2] Siegel P H 2004 IEEE Trans. Microwave Theory Technol. 52 2438
[3] Chan W L, Moravec M L, Baraniuk R G and Mittleman D M 2008 Opt. Lett. 33 974
[4] Melo A M, Gobbi A L, Piazzetta M H O and Silva A M P A da 2012 Adv. Opt. Technol. 2012 530512
[5] Gallant A J, Kaliteevski M A, Brand S, Wood D, Petty M, Abram R A and Chamberlain J M 2007 J. Appl. Phys. 102 023102
[6] Nazmov V, Reznikova E, Mathis Y L, Mathuni J, Müller A, Rudych P, Last A and Saile V 2009 Nucl. Instrum. Methods Phys. Res. A 603 150
[7] Zhu Y, Vegesna S, Kuryatkov V, Saed M M and Bernussi A A 2012 Opt. Lett. 37 296
[8] Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D and Wang G 2013 Appl. Phys. B 113 285
[9] Beasley A J, Murowinski R and Tarenghi M 2006 Proc. SPIE 6267 2
[10] Tarenghi M 2008 Astrophys. Space Sci. 313 1
[11] Song H J and Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256
[12] AkyildizAuthor Vitae L F, JornetAuthor Vitae J M and Han C 2014 Phys. Commun. 12 16
[13] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[14] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[15] Ma Y, Chen Q, Grant J, Shimul Saha C, Khalid A and David R S C 2011 Opt. Lett. 36 945
[16] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W and Cui T 2012 Appl. Phys. Lett. 101 154102
[17] Guo C, Sun H and Lu X 2008 Prog. Electromagn. Res. B 9 137
[18] Lu M, Li W and Brown E R 2011 Opt. Lett. 36 1071
[19] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
[20] Lan F, Gao X and Qi L M 2014 Acta Phys. Sin. 63 104209(in chinese)
[21] Munk B A 2000 Frequency Selective Surfaces: Theory and Design (New York: John Wiley and Sons Inc.) p. 393
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[12] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[15] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
No Suggested Reading articles found!