Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104301    DOI: 10.1088/1674-1056/24/10/104301
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics

Xu Zheng (徐峥)a b, Yasuda Keiji (安田启司)b, Liu Xiao-Jun (刘晓峻)c
a School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
b Department of Chemical Engineering, Nagoya University, Nagoya 464-8603, Japan;
c School of Physics, Nanjing University, Nanjing 210093, China
Abstract  In order to design a sonochemical reactor with high reaction efficiency, it is important to clarify the size and intensity of the sonochemical reaction field. In this study, the reaction field in a sonochemical reactor is estimated from the distribution of pressure above the threshold for cavitation. The quantitation of hydroxide radical in a sonochemical reactor is obtained from the calculation of bubble dynamics and reaction equations. The distribution of the reaction field of the numerical simulation is consistent with that of the sonochemical luminescence. The sound absorption coefficient of liquid in the sonochemical reactor is much larger than that attributed to classical contributions which are heat conduction and shear viscosity. Under the dual irradiation, the reaction field becomes extensive and intensive because the acoustic pressure amplitude is intensified by the interference of two ultrasonic waves.
Keywords:  reaction field      cavitation      bubble dynamics      hydroxide radical  
Received:  12 March 2015      Revised:  24 April 2015      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404245, 11204129, and 11211140039).
Corresponding Authors:  Liu Xiao-Jun     E-mail:  liuxiaojun@nju.edu.cn

Cite this article: 

Xu Zheng (徐峥), Yasuda Keiji (安田启司), Liu Xiao-Jun (刘晓峻) Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics 2015 Chin. Phys. B 24 104301

[1] Henglein A 1987 Ultrasonics 25 6
[2] Gedanken A 2004 Ultrason. Sonochem. 11 47
[3] Moholkar V S, Warmoeskerken M M G C, Ohl C D and Prosperetti A 2004 AIChE J. 50 58
[4] Flint E B and Suslick K S 1991 Science 253 1397
[5] Wu X M, Zhang S G and Zhang B X 2014 Acta Phys. Sin. 63 194302 (in Chinese)
[6] Liu X Z, Zhu Y, Zhang F and Gong X F 2013 Chin. Phys. B 22 024301
[7] Suslick K S and Flannigan D J 2008 Ann. Rev. Phys. Chem. 59 659
[8] Chowdhury P and Viraraghavan T 2009 Sci. Total Environ. 407 2474
[9] Neppiras E A 1980 Phys. Rep. 61 159
[10] Brotchie A, Grieser F and Ashokkumar M 2008 J. Phys. Chem. C 112 10247
[11] Feng R, Zhao R, Zhu C and Mason T J 2002 Ultrason. Sonochem. 9 231
[12] Brotchie A, Ashokkumar M and Grieser F 2007 J. Phys. Chem. C 111 3066
[13] Sivakumar M, Tatake P A and Pandit A B 2002 Chem. Eng. J. 85 327
[14] Yasuda K, Torii T, Yasui K, Iida Y, Tuziuti T, Nakamura M and Asakura Y 2007 Ultrason. Sonochem. 14 699
[15] Koda S, Kimura T, Kondon T and Mitome H 2003 Ultrason. Sonochem. 10 149
[16] Klíma J, Frias-Ferrer A, González-García J, Ludvík J, Sáez V and Iniesta J 2007 Ultrason. Sonochem. 14 19
[17] Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J and Macey P 2007 Ultrason. Sonochem. 14 605
[18] Servant G, Caltagirone J P, Gérard A, Laborde J L and Hita A 2000 Ultrason. Sonochem. 7 217
[19] Servant G, Laborde J L, Hita A, Caltagirone J P and Gérard A 2003 Ultrason. Sonochem. 10 347
[20] Moholkar V S, Rekveld S and Warmoeskerken M M C G 2000 Ultrasonics 38 666
[21] Kanthale P M, Gogate P R and Pandit A B 2007 Chem. Eng. J. 127 71
[22] Flint E B and Suslick K S 1991 Science 253 1397
[23] Yasui K 1996 J. Phys. Soc. Jpn. 65 2830
[24] Yasui K 1997 Phys. Rev. E 56 6750
[25] Kojima Y, Asakura Y, Sugiyama G and Koda S 2010 Ultrason. Sonochem. 17 978
[26] Yanagida H, Masubuchi Y, Minagawa K, Takimoto J, Oqata T and Koyama K 2000 Ultrasonics 38 671
[27] Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A and Iida Y 2008 J. Chem. Phys. 128 184705
[28] Dähnke S, Swamy K M and Keil F J 1999 Ultrason. Sonochem. 6 31
[29] Servant G, Labordea J L, Hita A, Caltagirone J P and Gérard A 2001 Ultrason. Sonochem. 8 163
[30] Jamshidi R, Pohl B, Peuker U A and Brenner G 2012 Chem. Eng. J. 189 364
[31] Burton C J 1948 J. Acoust. Soc. Am. 20 186
[32] Hall L 1948 Phys. Rev. 73 775
[33] Xu Z, Yasuda K and Koda S 2013 Ultrason. Sonochem. 20 452
[34] Mitome H 1991 Jpn. J. Appl. Phys. 30 60
[35] Yasui K, Tuziuti T, Kozuka T, Towata A and Iida Y 2007 J. Chem. Phys. 127 154502
[36] Yasuda K, Tachi M, Bando Y and Nakamura M 1999 J. Chem. Eng. Jpn. 32 347
[1] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[2] A study of cavitation nucleation in pure water using molecular dynamics simulation
Hua Xie(谢华), Yuequn Xu(徐跃群), and Cheng Zhong(钟成). Chin. Phys. B, 2022, 31(11): 114701.
[3] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[4] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[5] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[6] Theoretical estimation of sonochemical yield in bubble cluster in acoustic field
Zhuang-Zhi Shen(沈壮志). Chin. Phys. B, 2020, 29(1): 014304.
[7] Theoretical prediction of the yield of strong oxides under acoustic cavitation
Jing Sun(孙晶), Zhuangzhi Shen(沈壮志), Runyang Mo(莫润阳). Chin. Phys. B, 2019, 28(1): 014301.
[8] Impact of cavitation on lesion formation induced by high intensity focused ultrasound
Pengfei Fan(范鹏飞), Jie Yu(于洁), Xin Yang(杨鑫), Juan Tu(屠娟), Xiasheng Guo(郭霞生), Pintong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2017, 26(5): 054301.
[9] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[10] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[11] Bubble nonlinear dynamics and stimulated scattering process
Jie Shi(时洁), De-Sen Yang(杨德森), Sheng-Guo Shi(时胜国), Bo Hu(胡博), Hao-Yang Zhang(张昊阳), Shi-Yong Hu(胡诗涌). Chin. Phys. B, 2016, 25(2): 024304.
[12] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[13] Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro
Huan-Lei Wang(王焕磊), Peng-Fei Fan(范鹏飞), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Yong Ma(马勇), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124314.
[14] Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number
Ye Peng-Cheng (叶鹏程), Pan Guang (潘光). Chin. Phys. B, 2015, 24(6): 066401.
[15] Effect of supercritical water shell on cavitation bubble dynamics
Shao Wei-Hang (邵纬航), Chen Wei-Zhong (陈伟中). Chin. Phys. B, 2015, 24(5): 054701.
No Suggested Reading articles found!