Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087502    DOI: 10.1088/1674-1056/24/8/087502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array

Zhang You-Tian (张又天)
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Competings or frustrated interactions are common for condensed matter systems. In consideration of the effect of dipole–dipole interaction, the static properties of square lattice spin systems are investigated using the Wang–Landau algorithm. The dynamic hysteresis is also simulated using the Monte Carlo (MC) method. The step-like magnetization under a DC magnetic field and two distinct peaks in hysteresis dispersion under an AC magnetic field are observed. Then, the formation of the properties of the frustrated dipolar array are discussed.
Keywords:  artificial spin ice      Monte Carlo method      magnetization process  
Received:  27 February 2015      Revised:  06 May 2015      Accepted manuscript online: 
PACS:  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.60.Ch (Domain walls and domain structure)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  02.70.Uu (Applications of Monte Carlo methods)  
Corresponding Authors:  Zhang You-Tian     E-mail:  ytzhang@smail.nju.edu.cn

Cite this article: 

Zhang You-Tian (张又天) Magnetization plateaus and frequency dispersion of hysteresis on frustrated dipolar array 2015 Chin. Phys. B 24 087502

[1] Diep H T 2004 Frustrated Spin Systems (Singapore: World Scientific)
[2] Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85 1473
[3] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffer P 2006 Nature 439 303
[4] Möller G and Moessner R 2006 Phys. Rev. Lett. 96 237202
[5] Libál A, Reichhardt C J O and Reichhardt C 2009 Phys. Rev. Lett. 102 237004
[6] Mól L A S, Moura-Melo W A and Pereira A R 2010 Phys. Rev. B 82 054434
[7] Morgan J P, Stein A, Langridge S and Marrows C H 2011 Nat. Phys. 7 75
[8] Bader S D 2006 Rev. Mod. Phys. 78 1
[9] Rozenbaum V M 1995 Phys. Rev. B 51 1290
[10] Gilbert I, Chern G W, Zhang S, O'Brien L, Fore B, Nisoli C and Schiffer P 2014 Nat. Phys. 10 670
[11] Chern G W, Morrison M J and Nisoli C 2013 Phys. Rev. Lett. 111 177201
[12] Politi P, Pini M G and Stamps R L 2006 Phys. Rev. B 73 020405
[13] Yao X Y, Dong S and Liu J M 2006 Phys. Rev. B 73 212415
[14] Lin W S, Yang T H, Wang Y, Qin M H, Liu J M and Ren Z 2014 Phys. Lett. A 378 2565
[15] Xie Y L, Wang Y L, Yan Z B and Liu J M 2014 J. Appl. Phys. 115 17E122
[16] Chakrabarti B K and Acharyya M 1999 Rev. Mod. Phys. 71 847
[17] Liu J M, Chan H L W, Choy C L and Ong C K 2001 Phys. Rev. B 65 014416
[18] Jung P, Gray G, Roy R and Mandel P 1990 Phys. Rev. Lett. 65 1873
[19] Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050
[20] Landau D P, Tsai S H and Exler M 2004 Am. J. Phys. 72 1294
[21] Lo W S and Pelcovits R A 1990 Phys. Rev. A 42 7471
[22] Zhu H, Dong S and Liu J M 2004 Phys. Rev. B 70 132403
[23] Liu J M, Chan H L W, Choy C L, Zhu Y Y, Zhu S N, Liu Z G and Min N B 2001 Appl. Phys. Lett. 79 236
[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[5] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[6] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[7] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[8] Mobility of large clusters on a semiconductor surface: Kinetic Monte Carlo simulation results
M Esen, A T Tüzemen, M Ozdemir. Chin. Phys. B, 2016, 25(1): 013601.
[9] Path integral Monte Carlo study of (H2)n@C70 (n=1,2,3)
Hao Yan (郝妍), Zhang Hong (张红), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 088103.
[10] Speckle intensity images of target based on Monte Carlo method
Wu Ying-Li (武颖丽), Wu Zhen-Sen (吴振森). Chin. Phys. B, 2014, 23(3): 037801.
[11] Mαβ X-ray production cross sections of Pb and Bi by 9–40 keV electron impact
Wu Ying (吴英), Wang Guan-Ying (王冠鹰), Mu Qiang (穆强), Zhao Qiang (赵强). Chin. Phys. B, 2014, 23(1): 013401.
[12] Sorption and permeation of gaseous molecules in amorphous and crystalline PPX C membranes: molecular dynamics and grand canonical Monte Carlo simulation studies
Bian Liang(边亮), Shu Yuan-Jie(舒远杰), and Wang Xin-Feng(王新峰) . Chin. Phys. B, 2012, 21(7): 074208.
[13] Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols
Wang Hai-Hua(王海华) and Sun Xian-Ming(孙贤明) . Chin. Phys. B, 2012, 21(5): 054204.
[14] Hydrogen storage in BC3 composite single-walled nanotube:a combined density functional theory and Monte Carlo investigation
Liu Xiu-Ying(刘秀英), Wang Chao-Yang(王朝阳), Tang Yong-Jian(唐永建), Sun Wei-Guo(孙卫国), and Wu Wei-Dong (吴卫东). Chin. Phys. B, 2010, 19(3): 036103.
[15] Critical behaviour of the ferromagnetic Ising model on a triangular lattice
Luo Zhi-Huan(罗志环), Loan Mushtaq, Liu Yan(刘岩), and Lin Jian-Rong(林健荣). Chin. Phys. B, 2009, 18(7): 2696-2702.
No Suggested Reading articles found!