Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098102    DOI: 10.1088/1674-1056/24/9/098102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-efficiency wideband flat focusing reflector mediated by metasurfaces

Yu Ji-Bao (余积宝)a, Ma Hua (马华)a, Wang Jia-Fu (王甲富)a, Li Yong-Feng (李勇峰)a, Feng Ming-De (冯明德)a b, Qu Shao-Bo (屈绍波)a
a School of Science, Air Force Engineering University, Xi'an 710051, China;
b State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We propose to achieve a high-efficiency wideband flat focusing reflector using metasurfaces. To obtain the wide band, the polarization conversion mechanism is introduced into the reflector design, based on the fact that the reflection phases of cross-polarized waves are linear in quite a wide band. This facilitates the design of wideband parabolic reflection phase profile. As an example, we design two reflective focusing metasurfaces with one- and two-dimensional in-plane parabolic reflection phase profiles based on elliptical split ring resonators (ESRRs). Both the simulation and experiment verify the wideband focusing performance in 10.0-22.0 GHz of the flat reflectors. Due to the wide operating band, such reflectors have important application values in communication, detection, measurement, imaging, etc.
Keywords:  metasurface      focus      phase gradient      wideband  
Received:  12 March 2015      Revised:  21 April 2015      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11274389, and 11204378), the Postdoctoral Science Foundation of China (Grant Nos. 2013M532131 and 2014M552451), and the Foundation of the Author of National Excellent Doctoral Dissertation of China (Grant No. 201242).
Corresponding Authors:  Ma Hua, Qu Shao-Bo     E-mail:  mahuar@163.com;qushaobo@mail.xjtu.edu.cn

Cite this article: 

Yu Ji-Bao (余积宝), Ma Hua (马华), Wang Jia-Fu (王甲富), Li Yong-Feng (李勇峰), Feng Ming-De (冯明德), Qu Shao-Bo (屈绍波) High-efficiency wideband flat focusing reflector mediated by metasurfaces 2015 Chin. Phys. B 24 098102

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J and Zhang W 2013 Adv. Mater. 25 4566
[3] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K and Chen H T 2013 Science 340 1304
[4] Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z and Capasso F 2012 Appl. Phys. Lett. 100 013101
[5] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[6] Cheng Y Z, Nie Y, Wang X and Gong R Z 2013 Appl. Phys. A-Mater. 111 209
[7] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[8] Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q and Zhang Y 2013 Opt. Express 21 30030
[9] Li X, Xiao S, Cai B, He Q, Cui T J and Zhou L 2012 Opt. Lett. 37 4940
[10] Huang H Y, Ding S and Wang B Z 2014 Chin. Phys. B 23 064101
[11] Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y and Li Y F 2012 Appl. Phys. Lett. 101 201104
[12] Sun S L, He Q, Xiao S Y, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[13] Paul O, Reinhard B, Krolla B, Beigang R and Rahm M 2010 Appl. Phys. Lett. 96 241110
[14] Memarzadeh B and Mosallaei H 2011 Opt. Lett. 36 2569
[15] Carrasco E and Perruisseau-Carrier J 2013 IEEE Antennas Wireless Propag. Lett. 12 253
[16] Monticone F, Estakhri N M and Alú A 2013 Phys. Rev. Lett. 110 203903
[17] Pors A, Nielsen M G, Eriksen R L and Bozhevolnyi S I 2013 Nano Lett. 13 829
[18] Kang M, Feng T, Wang H T and Li J 2012 Opt. Express 20 15882
[19] Chen X, Huang L, Muhlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zentgraf T and Zhang S 2013 Adv. Opt. Mater. 1 517
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[3] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[8] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[9] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[10] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[11] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[12] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[13] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[14] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[15] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
No Suggested Reading articles found!